
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 1

DeepBinaryMask: Learning a Binary Mask for
Video Compressive Sensing

Michael Iliadis, Member, IEEE, Leonidas Spinoulas, Member, IEEE, and Aggelos K. Katsaggelos, Fellow, IEEE

Abstract—In this paper, we propose a novel encoder-decoder
neural network model referred to as DeepBinaryMask for video
compressive sensing. In video compressive sensing one frame
is acquired using a set of coded masks (sensing matrix) from
which a number of video frames, equal to the number of coded
masks, is reconstructed. The proposed framework is an end-
to-end model where the sensing matrix is trained along with
the video reconstruction. The encoder maps a video block to
compressive measurements by learning the binary elements of the
sensing matrix. The decoder is trained to map the measurements
from a video patch back to a video block via several hidden layers
of a Multi-Layer Perceptron network. The predicted video blocks
are stacked together to recover the unknown video sequence.
The reconstruction performance is found to improve when using
the trained sensing mask from the network as compared to
other mask designs such as random, across a wide variety
of compressive sensing reconstruction algorithms. Finally, our
analysis and discussion offers insights into understanding the
characteristics of the trained mask designs that lead to the
improved reconstruction quality.

Index Terms—Deep Learning, Compressive Sensing, Mask
Optimization, Binary Mask, Video Reconstruction.

I. INTRODUCTION

IN signal processing, Compressive Sensing (CS) is a popular
problem which has been incorporated in various applica-

tions [1], [2]. In principle, CS theory suggests that a signal can
be perfectly reconstructed using a small number of random
incoherent linear projections by finding solutions to underde-
termined linear systems. The underdetermined linear system
in CS is defined by,

y = Φx, (1)

where Φ is the Mf ×Nf measurement or sensing matrix with
Mf � Nf . We denote the vectorized versions of the unknown
signal and compressive measurements as x : Nf × 1 and
y : Mf × 1, respectively. Thus, having more unknowns than
equations, to guarantee a single solution in system (1) sparsity
on the signal is enforced. Many signals, such as natural images,
are sparse in well-known bases (e.g., Wavelet). Therefore,
most reconstruction approaches employ a regularization term
F (·) which promotes sparsity of the unknown signal x on
some chosen transform domain. Thus, the following minimiza-
tion problem is sought after,

â = argmin
a

F (a) s.t. y = ΦDa, (2)

M. Iliadis, L. Spinoulas and A. K. Katsaggelos are with the Department
of Electrical Engineering and Computer Science, Northwestern University,
Evanston, IL 60208-3118 USA (e-mail: miliad@northwestern.edu; leon-
isp@u.northwestern.edu; aggk@eecs.northwestern.edu).

HfWf × × tHfWf ×

∗

∫
dt=

Captured
frame (y)

Measurement
matrix (Φ)

Spatio-Temporal
volume (x)

HfWf × × t

Fig. 1. Temporal compressive sensing measurement model.

where D is a chosen sparse representation transform resulting
in a sparse a, such that x = Da. For example, in the case
F = ||a||0, the problem in Eq. (2) is translated to an `0
minimization problem, which can be solved with standard nu-
merical methods such as Orthogonal Matching Pursuit (OMP)
and Basis Pursuit (BP).

Multiple algorithms have been proposed for reconstructing
still images using CS by solving the problem in (2). The
problem of video compressive sensing (VCS) refers to the
recovery of an unknown spatio-temporal volume from the
limited compressive measurements. There are two different
approaches in VCS, namely spatial and temporal. Spatial VCS
architectures perform spatial multiplexing per measurement
based on the well-known single-pixel-camera [3] and enable
video recovery by expediting the capturing process [4], [5],
[6]. In temporal VCS, multiplexing occurs along the time
dimension. Figure 1 demonstrates this process, where a spatio-
temporal signal of size Wf ×Hf × t = Nf is modulated by
t binary random masks during the exposure time of a single
capture and produces a coded frame of size Wf ×Hf = Mf .
The acquisition model in (1) applies to the temporal VCS case
as well. However, the construction of Φ is different in this case.
In particular, it is sparse and is given by,

Φ = [diag(φ1), . . . , diag(φt)] : Mf ×Nf , (3)

where each vectorized sampling mask is expressed as
φ1, . . . , φt and diag(·) creates a diagonal matrix from its
vector argument. It is noted here that the spatio-temporal
volume is lexicographically ordered into the vector x by
considering first the spatial and then the temporal dimensions.

Performance guarantees for sparse reconstruction methods,
i.e., OMP, indicate that matrix Φ must be an incoherent
unit norm tight frame [7]. Incoherence is a property that
characterizes the degree of similarity between the columns of
Φ (or ΦD). Therefore, the choice of matrix Φ is crucial for
the reconstructed image and video quality irrespectively of the
choice of F (·). For signals that can be represented sparsely

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 2

in some basis, various popular matrices in the literature are
known to perform particularly well (e.g., Gaussian). However,
in VCS the design of Φ as part of the acquisition hardware
(e.g., camera) introduces certain limitations. For practical
implementations, binary random matrices (e.g., Bernoulli) are
better suited while they perform favorably to Gaussian random
matrices [8].

The problem of optimizing the Φ matrix has been analyzed
by several researchers [9], [10], [7], [11]. Unfortunately, op-
timization approaches typically rely on minimizing the coher-
ence between the sampling matrix Φ and the sparsifying basis
(ΦD), which mostly applies to spatial compressive sensing
where dense matrices are used. Instead, the masks used for
temporal VCS systems, as the one described herein, result in a
sparse binary matrix with entries across diagonals, as presented
by Eq. (3), and therefore existing results are not applicable.

In this work, we optimize the sensing matrix Φ for temporal
VCS and transform it into a form that is more suitable
for reconstruction using deep neural networks. The proposed
neural network architecture, which is referred to as DeepBi-
naryMask, consists of two components that act as a pair of an
encoder and a decoder. The encoder maps a video block to
compressive measurements by learning binary weights (which
correspond to the entries on the diagonals of the measurement
matrix). The decoder maps the measurements back to a video
block, via several hidden layers of a Multi-Layer Perceptron
(MLP) network, utilizing real-valued weights. Both networks
are trained jointly. We show that the mask trained from
data using neural networks provides significantly improved
recovery performance as compared to a non-trained sensing
mask.

A. Contributions

• Learning binary weights and reconstruction simul-
taneously: Since existing approaches of optimizing the
Φ matrix for spatial CS are not applicable for temporal
VCS, we consider using deep learning-based recovery
to train the Φ matrix and optimize mask parameters via
back-propagation [12]. On this front, we propose a novel
encoder-decoder neural network for temporal VCS in
which the encoder learns binary weights that form the
sensing mask and the decoder learns to reconstruct the
video sequence given the encoded measurements. Our
learning approach is performed on 3D video blocks.

• Learning a general mask: We show that the reconstruc-
tion performance is improved when using the optimized
trained mask over a random one. Performance improve-
ments are reported not only when the reconstruction
method is the neural network decoder but also when other
popular reconstruction methods are employed (e.g., based
on `1 optimization).

• Mask analysis: We present a reconstruction performance
analysis of the trained sensing mask/matrix for different
mask initializations (e.g., initial number of nonzero ele-
ments). Furthermore, we conduct experiments using dif-
ferent random seeds when initializing the binary random
masks to confirm performance stability.

II. MOTIVATION AND RELATED WORK

Recent advances in Deep Neural Networks (DNNs) [13]
have demonstrated state-of-the-art performance in several
computer vision and image processing tasks, such as image
recognition [14] and object detection [15]. In this section we
briefly discuss previous works in designing optimal masks
for VCS and then we survey recent studies in image recovery
problems using DNNs. Finally, we describe advances in
DNNs utilizing binary weights, a key ingredient of our
proposed method.

Designing optimal masks. Most of the previously proposed
optimized mask patterns for temporal VCS rely on some
heuristic constraints and trial-and-error patterns. A thresholded
Gaussian matrix was employed in [16], [17] and [18] as
it was assumed that it results in a sensing matrix that most
closely resembles a dense Gaussian matrix. A normalized
mask such that the total amount of light collected at each
pixel is constrained to be constant was proposed by [19].
It was found in [20] that these normalized patterns produce
improved reconstruction performance. In [20] a hybrid
normalized and Gaussian thresholded mask was utilized
which was found to outperform the masks proposed in [19]
and [17].

Differently from these works, our proposed approach is
data-driven and does not impose any mask constraints but
instead generates mask patterns learnt from the training data.
To the best of our knowledge this is the first study that
investigates the construction of an optimized binary temporal
VCS mask through DNNs.

Concurrent with our work, the method in [21] is developed
for learning sensor’s color multiplexing patterns for image
demosaicking. The sensor’s mask is jointly learnt with
reconstruction, however, the task of demosaicking differs
from ours. To that extend, the learning process is also
fundamentally different; The task in [21] is to learn a mask
to use one of the discrete set of color filters at each pixel
location. To learn such masks a good choice is to apply a
softmax function to the weights during training (therefore,
estimating class probabilities for each color channel) and
create an one-hot vector during testing to indicate color
channel selection. In our case, the compressive video
measurements are not discrete and the theory of CS suggests
that to be able to recover the unknown signal a weighted
linear combination of samples is required. Thus, multiple
ones and zeros may be realized in each location during the
acquisition of the frames and thresholded binary weights
(thus, not class probabilities) are estimated during training
and testing for accurate VCS reconstruction.

DNNs for image recovery. The capabilities of deep
architectures have been investigated in image recovery
problems such as deconvolution [22], [23], [24],
denoising [25], [26], [27], [28], [29], inpainting [30],
and super-resolution [31], [32], [33], [34]. Deep architectures
have also been proposed for CS of still images. In [35],
stacked denoising auto-encoders (SDAs) were employed to

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 3

learn a mapping between the CS measurements and image
blocks. A similar approach was also utilized in [36], [37] but
instead of SDAs, convolutional neural networks (CNNs) were
used in [36] and residual networks (ResNets) in [37].

A closely related study is our previous work in [38]
which focuses on learning to map directly temporal VCS
measurements to video frames using deep fully-connected
networks when the measurement matrix is fixed. We showed
that the deep learning framework enables the recovery of
video frames from temporal compressive measurements in a
few seconds at significantly improved reconstruction quality
compared to different, optimization based, schemes.

Binary neural networks. Recently, several approaches
have been proposed on the development of neural networks
with binary weights [39], [40], [41], [42] for image recognition
applications. The main objective of such an approach is to
simplify computations in neural networks, thus making them
more efficient while requiring reduced storage. Efficiency is
achieved by approximating the standard real-valued DNNs
with binary weights. In BinaryConnect [40] the authors
proposed to binarize the weights for all layers during the
forward and backward propagations while keeping the real-
valued weights during the parameter update. The real-valued
updates were found to be necessary for the application of
stochastic gradient descent (SGD). Performance with various
classification tasks demonstrated that binary neural networks
compare favorably with real-valued weight networks. In [42],
the authors introduced a weight binarization scheme where
both a binary filter and a scaling factor are estimated.
Such scheme was proven more effective compared to the
BinaryConnect.

Motivation for using DNNs to learn mask parameters.
Motivated by the success of DNNs in CS reconstruction and
binary DNNs in classification, we investigate in this paper
the problem of learning an optimized binary sensing matrix
using DNNs for temporal VCS.

The work presented in this paper is different from the stud-
ies in image recovery using DNNs and from the binary neural
networks. First, this work is different from our work in [38]
since our focus is on learning an optimized sensing mask along
with the video reconstruction. In [38] the scope was to recover
video frames directly from the temporal measurements (i.e.,
the mask is pre-defined). Furthermore, our objective in this
paper is to learn binary masks that will encode video frames
on VCS cameras for video reconstruction which is different
from that in binary neural network studies, which is efficiency
for image recognition problems.

III. DEEPBINARYMASK

In this work, we propose a novel neural network architecture
that learns to encode a three dimensional (3D) video block to
compressive two-dimensional (2D) measurements by learning
the binary weights of Φ and to decode the measurements back
to a video block, as illustrated in Figure 2. Let us now describe
in detail the encoder and decoder.

A. Encoder

In order for our learning approach to be practical, recon-
struction has to be performed on 3D video blocks [36], [38].
Thus, each video block must be sampled with a block-based
measurement matrix which should be the same for all blocks.
Furthermore, such a measurement matrix should be realizable
in hardware. We follow the pattern in [38] and we consider
a Φ which consists of repeated identical building blocks of
size wp × hp × t = Np corresponding to the matrix Φp of
size Mp × Np, where Mp = wp × hp. In other words Φp

has the structure shown in Eq. (3), in which Mf and Nf have
been respectively replaced by Mp and Np. An implementation
of such a matrix on existing systems employing Digital Mi-
cromirror Devices (DMDs), Spatial Light Modulators (SLMs)
or Liquid Crystal on Silicon (LCoS) [6], [18], [19], [16], [5]
can easily be performed. At the same time, a repeated mask
can be printed and shifted appropriately to produce the same
effect in systems utilizing translating masks [20], [17].

Let us consider a set of N training 3D video blocks, each
of size wp × hp × t. They are lexicographically ordered by
considering first the spatial and then the temporal dimensions
to form vectors xi, each of size Np×1. The encoder is defined
as the mapping g(·) that transforms each xi to a measurement
yi of size Mp × 1, which represents the lexicographically
ordered wp × hp image patch, followed by a non-linearity
given as,

yi = g(xi; θe) = σe(Φpxi), (4)

where θe = {Φp} is the parameter set and function σe(·)
represents the non-linearity. We use the subscript “e” to denote
quantities pertaining to the encoder, in order to distinguish
them from the decoder quantities to be introduced later.

The formulation in (4) would have been straightforward to
handle if matrix Φp were dense and consisting of real-values.
However, as mentioned earlier, in the case of temporal VCS,
matrix Φ is binary (due to implementation considerations)
and sparse following the structure defined in (3). For ease of
presentation let us now also define a matrix B ∈ {0, 1}t×Mp

containing the binary weights as,

B =
[
b1, . . .bMp

]
=

b1,1 . . . b1,Mp

...
. . .

...
bt,1 . . . bt,Mp

 . (5)

It is related to the measurement matrix Φp as,

Φp =

b1,1 0 0 bt,1 0 0

0
. . . 0 · · · 0

. . . 0
0 0 b1,Mp

0 0 bt,Mp

 . (6)

In order to realize such a structure in a neural network and be
able to train it we transform the encoder into a network that
involves the following steps:

1) The first step consists of Mp binary parallel layers. To
describe this step we need to introduce a new column

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 4

wp × hp × t

wp × hp × t

wp × hp × t

K hidden
layers

Input
layer

Output
layer

Linear binary mapping
of a block to a patch

Block extraction Reshaping into patchInner products along t with binary vectors

Nonlinear mapping
of a patch to a block

Reconstruction by averaging
overlapping blocks

Measured
frame

Measured
frame

Reconstructed
video sequence

L1 LK

WkW1 Wo

Input
video sequence

Input
video sequence

Block division
into sub-blocks

Enforcing binary weight
sharing for all sub-blocks

Parallel
binary layers

Concat.
layer

Binary
layer

TRAINING
TESTING

Fig. 2. Illustration of the proposed encoder-decoder neural network for video compressive sensing. The bottom part demonstrates the encoder network that is
responsible for learning the binary mask and outputs CS measurements. The upper part, labeled as “TESTING” illustrates the decoder network which takes
as input CS measurements and outputs a video sequence.

(t × 1) vector xi,j , which consists of all the temporal
elements at a given spatial location j, that is,

xi,j =

xi(j)
xi(Mp + j)
xi(2Mp + j)

...

xi

(
(t− 1)Mp + j

)

, (7)

where xi(j) denotes the j-th element of vector xi. Then
in parallel the following inner products are computed,

e(xi,j) = bT
j xi,j , for j = 1, ...,Mp. (8)

2) The second step consists of a concatenation layer which
concatenates the outputs of the parallel layers in order
to construct a single measurement vector that is,

yi = g(xi; θe) = concat
(
e(xi,1), . . . , e(xi,Mp)

)
, (9)

with a parameter set θe = {b1, . . . ,bMp}, as defined
by Eqs. (5) and (6). Note, that a non-linearity such
as the rectified linear unit (ReLU) [43] defined as,
σ(z) = max(0, z), is implicitly applied here after the

concatenation since the output is always positive. This
is due to the fact that the weights are binary with values
0 and 1 and the video inputs have non-negative values.

The above two steps follow the model presented in Figure 1
but translated to a neural network, where the set θe consists of
the elements of the trained projection matrix. The two steps
of the encoder are illustrated at the bottom part of Figure 2.
Note that the figure refers to the encoding of overlapping
blocks, as we describe next.

Overlapping blocks and weight sharing. The t×Mp binary
weight matrix B we have considered so far corresponds to
non-overlapping video blocks. In order to realize overlapping
blocks which usually aid in improving reconstruction quality
we can utilize repeating blocks of dimensions wp

2 ×
hp

2 × t,
which we call sub-blocks as shown in Figure 2. Thus, for the
final trained matrix Φp each wp

2 ×
hp

2 × t sub-block is the
same allowing reconstruction of overlapping blocks of size
wp × hp × t with spatial overlap of wp

2 ×
hp

2 = ws × hs, as
presented in Figure 3. In such a case the parameter set θe is
also different. Instead of learning Mp binary weight vectors
we learn Mp/4, where each weight vector is shared four

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 5

Full measurement matrix (Φ)

Build
ing su

b-block

Repeat in both
directions

ws × hs × t

Fig. 3. Construction of the full measurement matrix by repeating a three
dimensional random binary array (building sub-block) in the horizontal and
vertical directions.

times for each of the corresponding pixel positions of the
input. For example, in the case when wp × hp = 8× 8 there
will be four identical 4× 4× t sub-block projection matrices.
Notice in Figure 2 that the values of the input block at the
corresponding pixel locations at each of the sub-blocks are
multiplied by the same binary vector. Thus, for this example,
we only need to estimate 16 binary weight vectors and each
one is shared by four different inputs. For instance, in order
to calculate e(xi,1), e(xi,5), e(xi,33), e(xi,37) the weight
vector b1 is used.

Binary weights. Let us now proceed to describe how
to estimate the binary weights. We follow the BinaryConnect
method [40] to constrain the weights of the encoder to be
equal to either 0 or 1 during propagation. The binarization
scheme to transform the real-valued weights to binary values
is based on the sign function, that is,

bb =

{
1 if br ≥ 0,
0 otherwise,

(10)

where bb and br are the binarized and real-valued weights
of B, respectively. Following the training process in [40] we
binarize the weights of the encoder only during the forward
and backward propagations. The update of the parameter set
θe is performed using the real-valued weights. As explained
in [40], keeping the real-valued weights during the updates is
necessary for training the networks using SGD. In addition,
we enforced the real-valued weights to lie within the [−1, 1]
interval at each training iteration. The weight clipping was
chosen since otherwise the weights may become infinitely
large having no impact during binarization.

Weight initialization. The network weight initialization of
the encoder corresponds in our case to the mask initialization.
Typically, in VCS the mask is generated randomly. Similarly
here, we start with a randomly generated mask by a Bernoulli
distribution. However, since real-valued weights are also
required by the network to perform their updates we consider
the following initialization scheme,

bb ∼ Bern (p) ,

br =

{
∼ Unif

(
0, 1/
√
t
)

if bb = 1,
∼ Unif

(
−1/
√
t, 0
)

otherwise,

(11)

where Bern(·) and Unif(·) denote the Bernoulli and Uniform
distributions, respectively, p is the probability of the weight to
be initialized with 1 and notation (·, ·) refers to the lower and
upper bounds for the values of the distribution. The bounds
of the Uniform distribution follow the scheme introduced
in [44]. The initialization scheme proposed above allows us to
fully understand the benefits of learning as compared to non-
learning the mask along with reconstructing the video. This is
due to the fact that in the case of choosing the non-learning
mode we keep the initial bb weights, drawn from the Bernoulli
distribution, fixed.

B. Decoder

The resulting hidden measurement yi produced by the
encoder is then mapped back to a reconstructed Np×1 vector
through the decoder f(yi; θ), which when unstacked results in
the wp × hp × t dimensional video block, as illustrated in the
upper part of Figure 2. Thus, the decoder of the proposed
method is another network which is trained to reconstruct
the video output sequence given yi. We consider an MLP
architecture to learn a nonlinear function f(·) that maps a
measured frame patch yi via several hidden layers to a video
block xi as in [38].

The output of the kth hidden layer Lk, k = 1, . . . ,K is
defined as,

hk(yi) = σd(Wkhk−1(yi) + ck), with h0(yi) = yi, (12)

where Wk is the output weight matrix, and ck ∈ RNp the
bias vector. W1 ∈ RNp×Mp connects yi, the output of the
encoder, to the first hidden layer of the decoder, while for
the remaining hidden layers, {W2, . . . ,WK} ∈ RNp×Np .
The last hidden layer is connected to the output layer via
co ∈ RNp and Wo ∈ RNp×Np without nonlinearity. The non-
linear function σd(·) is the ReLU and the weights of each
layer are initialized to random values uniformly distributed in
(−1/

√
Np, 1/

√
Np) [44].

C. Choice of network architecture for decoder

One could argue that a CNN architecture could be used,
instead of an MLP one. There are several reasons why the
MLP architecture for the decoder is a reasonable choice for the
temporal video compressive sensing problem which have been
explained in [38]. First, unlike other imaging problems (e.g.,
deconvolution) the measuring process in video CS cannot be
modeled as a convolution since spatially neighboring pixels do
not contribute to each measured pixel in a 2D patch. Second,
since we want to move from 2D CS measurements, to 3D
video blocks, a fully-connected layer should be employed as
a first layer to increase the dimensionality of the unknown
variables to be estimated. Clearly, one could employ CNN
layers after the first layer and still be able to recover a
reasonable video reconstruction. However, the small size of
patches and video blocks used for reconstruction, in order to
make training feasible, would not allow for convolutions to
be effective. Indeed, we experimented with architectures that
contained subsequent convolutional layers and consistently
obtained worse or similar performance to the one reported

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 6

using a full MLP architecture. Since our focus in this work
is to primarily investigate and compare the performance of
the trained versus the non-trained sensing matrix we adopt the
decoder design in [38].

D. Training the encoder-decoder network

The two components of the proposed MLP encoder-
decoder are jointly trained by learning all the weights
and biases of the model. Using spatial overlap wp

2 ×
hp

2 the set of all parameters is denoted by θ ={
b1, . . .bMp/4;W1, . . .WK ;Wo; c1, . . . , cK ; co

}
and is up-

dated by the backpropagation algorithm [45] minimizing the
quadratic error between the set of the encoded mapped mea-
surements f(yi; θ) and the corresponding video blocks xi. The
loss function is the Mean Squared Error (MSE) which is given
by,

L(θ) =
1

N

N∑

i=1

‖f(yi; θ)− xi‖22. (13)

The MSE was used in this work since our goal is to optimize
the Peak Signal to Noise Ratio (PSNR) which is directly
related to the MSE.

Training procedure. The overall training procedure can
be summarized by the following steps:

1) Forward propagation is performed by using weights B
after binarization in the encoder and real-valued weights
W in the decoder.

2) Then, backpropagation is performed to compute the
gradients with respect to layer’s activation knowing B
and W .

3) Parameter updates are computed using the real-valued
weights for both encoder and decoder.

Note that one other difference between our work and [40]
is that our encoder-decoder neural network does not utilize
binary weights in all layers; instead it utilizes binary weights
at the encoder and standard real-valued weights at the decoder.

Implementation details. Our encoder-decoder neural
network is trained for 480 epochs using a mini-batch size
of 200. We used SGD with the momentum set equal to
0.9. We further used `2 norm gradient clipping to keep the
gradients in a certain range. Gradient clipping is a widely used
technique in recurrent neural networks to avoid exploding
gradients [46]. The threshold of gradient clipping was set
equal to 0.1.

One hyper-parameter that was found to affect the per-
formance in our approach is the learning rate. Based on
experimentation we chose a starting learning rate for the
encoder that was 10 times larger than that for the decoder.
This was found to be important as we wanted the weights
of the encoder to have their sign changed during the training
iterations. In addition, the learning rate was divided by 2 at
every 10 epochs in the encoder and by 10 after 400 epochs in
the decoder.

All hyper-parameters were selected after cross-validation
using a validation test set.

Test inference. Once the encoder-decoder neural network is
trained we use the trained sensing matrix B → Φ to calculate
the compressive measurements y. Then, given y we can use
any VCS algorithm (in addition to the decoder network) to
reconstruct the video blocks.

IV. EXPERIMENTAL RESULTS

In this section we present quantitative and qualitative recon-
struction results to demonstrate the effectiveness of the pro-
posed projection mask in temporal VCS. The performance of
our trained masks is investigated using various reconstruction
algorithms and initial mask parameters. Our analysis offers
insights into understanding how the different initial parameters
of the mask affect reconstruction performance. The metrics
used for reconstruction evaluation were the PSNR and SSIM
(Structural SIMilarity).

A. Training data collection and test set

In order to train our encoder-decoder architecture we col-
lected a diverse set of training samples using 400 high-
definition videos from Youtube, depicting natural scenes. The
video sequences contain more than 105 frames which were
converted to grayscale. We randomly extracted 1 million video
blocks of size wp×hp× t to train our encoder-decoder neural
network while keeping the amount of blocks extracted per
video proportional to its duration.

Our test set consists of 14 video sequences that were used
in [19] which are provided by the authors. We also included
in the test set the “Basketball” video sequence used in [47].
All test video sequences are unrelated to the training set.

B. Mask patterns and decoding layers

Our experimental investigation is motivated by the following
two questions: 1) “How does performance of trained and
non-trained masks compare using different reconstruction al-
gorithms?” and 2) “Does the training procedure result in a
unique sensing matrix Φ irrespectively of the initialization
parameters?”

In order to answer these two questions we simulated noise-
less compressive video measurements by realizing four differ-
ent wp

2 ×
hp

2 ×t mask patterns. We denote by “RandomMask-p”
the mask that is initialized with Bern (p), as in Eq. (11), and
is not learnt (that is, the elements of the encoder are fixed).
We also denote by “DeepMask-p” the learnt mask trained by
our proposed encoder-decoder network described in section III
and which is initialized by Bern (p) as in Eq (11). Thus, we
consider the following four mask patterns:

• RandomMask-20 and DeepMask-20, with p = 20%.
• RandomMask-40 and DeepMask-40, with p = 40%.
• RandomMask-60 and DeepMask-60, with p = 60%.
• RandomMask-80 and DeepMask-80, with p = 80%.
For the remainder of this paper, we describe the selection

of block sizes of wp × hp × t = 8 × 8 × 16, such that
Np = 1024 and Mp = 64. Therefore, the compression
ratio is 1/16. Although larger block sizes can be used in
our framework, block sizes of 8 × 8 have provided good

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 7

A
ve

ra
ge

 P
SN

R
Initial binary mask (RandomMask) Optimized binary mask (DeepMask)

24

34

26

28

30

32

Initial percentage
of 1’s on mask: 20%

Initial percentage
of 1’s on mask: 40%

Initial percentage
of 1’s on mask: 60%

Initial percentage
of 1’s on mask: 80%

FC4-1
M

DIC
T-L1

TV-M
IN

GMM-4

GMM-1

FC4-1
M

DIC
T-L1

TV-M
IN

GMM-4

GMM-1

FC4-1
M

DIC
T-L1

TV-M
IN

GMM-4

GMM-1

FC4-1
M

DIC
T-L1

TV-M
IN

GMM-4

GMM-1
.70

.90

.74

.78

.82

.86

A
ve

ra
ge

 S
SI

M

Reconstruction algorithm Reconstruction algorithm Reconstruction algorithm Reconstruction algorithm

Fig. 4. Average PSNR and SSIM over all test video sequences for several reconstruction methods using the RandomMasks and DeepMasks. The test set
consists of 14 videos sequences and the reported PSNR and SSIM corresponds to the average values for the reconstruction of the first 32 frames of each
sequence. The PSNR metric is measured in dB while the SSIM is unitless.

reconstruction quality with sharper reconstructed frames in
learning approaches used for CS video reconstruction [19],
[48]. It was shown that choosing larger block sizes led to worse
reconstruction quality. In addition, as mentioned earlier, the
small size of patches and video blocks used for reconstruction
make training feasible. Thus, we adopted this same setting
in our approach. Furthermore, for each of the eight Φ mask
types above, each wp

2 ×
hp

2 × t = 4 × 4 × 16 block is the
same allowing reconstruction for overlapping blocks of size
8 × 8 × 16 with spatial overlap of 4 × 4. Note that the same
random seed was utilized for all patterns.

Further, we used K = 4 hidden layers for the decoder
architecture of Figure 2. We found out experimentally that
for the number of training data used (1 million video blocks)
4 layers provided the best performance. A similar observation
was reported in [38] where the addition of extra layers for
this number of training data did not lead to performance
improvement.

In the following section we present the compressive sensing
reconstruction algorithms used to test the eight mask types.

C. Reconstruction Algorithms
Since our main goal is to compare the performance be-

tween a trained sensing mask over a non-trained one in an
implementation agnostic to mask patterns, we tested a number

of different reconstruction algorithms. Candidate reconstruc-
tion algorithms were selected for their utility in solving the
underdetermined system in the video compressive sensing
setting. We evaluated the following optimization algorithms
as potential solvers:

1) DICT-L1: In (1), we have described an underdeter-
mined system where data are noise-free. However, real
data are typically noisy and dealing with small dense
noise is required. In order to deal with such noise we
transform the problem in (2) into the LASSO (Least-
Absolute Shrinkage and Selection Operator) problem for
F = λ||a||1 given as,

â = argmin
a
‖y − ΦDa‖22 + λ||a||1, (14)

where λ > 0 is the regularization parameter whose
value is related to the noise tolerance. For this problem
we chose to use an overcomplete dictionary D as a
sparsifying basis. The dictionary consists of 20, 000
atoms trained on a subset of 200, 000 video blocks from
our training database and reconstruction is performed
block-wise on overlapping sets of 7×7 patches of pixels.
For the optimization problem in (14), λ was set equal
to 0.005.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 8

FC
4-

1M

33

29

30

31

32

5 10 15 20 25 300

PS
N

R

31

25

27

29

33

29

30

31

32

24

26

28

30

5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 300

D
IC

T-
L1

31

26
27
28
29

5 10 15 20 25 300

PS
N

R

Frame number

Horse sequence Porsche sequence

Frame number

28

22

24

26

31

27

28

29

30

21

23

25

27

29

5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 300

G
M

M
-1

31

28

30

29

5 10 15 20 25 300

PS
N

R

29

23

25

27

32

28

29

30

31

22

24

26

28

5 10 15 20 25 300 5 10 15 20 25 300 5 10 15 20 25 300

Frame number Frame number

Horse sequence Porsche sequence

Initial percentage of 1’s on mask: 20% Initial percentage of 1’s on mask: 40%

30

Initial binary mask (RandomMask) Optimized binary mask (DeepMask)

Fig. 5. PSNR (in dB) comparison for the first 32 frames of 2 video sequences among the proposed method FC4-1M and the previous methods GMM-1 [48]
and DICT-L1 [19]. Notice that the vertical scale changes among the various plots.

2) TV-MIN: A popular CS reconstruction method utilizes
for F (·) the total variation (TV) norm defined as,

TV (z) =
∑

i,j,n

((
z(i+ 1, j, n)− z(i, j, n)

)2

+
(
z(i, j + 1, n)− z(i, j, n)

)2
)1/2

,

(15)
where z is the stacked version of the 3D array z(i, j, n),
where (i, j, n) are respectively the two spatial and one
temporal coordinates. Thus, the TV minimization prob-
lem is given as,

x̂ = argmin
x
‖y − Φx‖22 + λTV (x). (16)

In order to solve (16) we used the two-step iterative
shrinkage/thresholding (TwIST) algorithm [49] with λ =
0.01.

3) GMM-TP: Another reconstruction algorithm we con-
sidered in our experiments is a Gaussian mixture model
(GMM)-based algorithm [48] learned from Training
Patches (TP) referred as GMM-TP. We followed the
settings proposed by the authors and used our training
data (randomly selecting 20, 000 samples) to train the
underlying GMM parameters. In our experiments we
refer to this method by GMM-4 and GMM-1 to denote

reconstruction of overlapping blocks with spatial overlap
of 4× 4 and 1× 1 pixels, respectively.

4) FC4-1M: Finally, another reconstruction method we
considered is the decoder neural network introduced in
subsection III-B. The decoder is a K = 4 MLP trained
on 1 million samples similarly to [38]. In this case,
a collection of overlapping patches of size 8 × 8 is
extracted by each coded measurement of size Wf ×Hf

and subsequently reconstructed into video blocks of
size 8 × 8 × 16. Overlapping areas of the recovered
video blocks are then averaged to obtain the final video
reconstruction results as shown in the upper part of
Figure 2. The step of the overlapping patches was set
to 4 × 4 due to the special construction of the utilized
measurement matrix, as discussed in subsection III-A.

For each algorithm, λ values were determined based on
the best performance among different settings. All code im-
plementations are publicly available provided by the authors
while the deep network architectures were implemented in
Torch7 [50], a Lua library that allowed us to develop an
optimized GPU code.

D. Reconstruction Results

For each reconstruction algorithm described above, we
tested the eight mask types presented in subsection IV-B.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 9

Horse Video Sequence Porsche Video Sequence
FC

4-
1M

O
ri

gi
na

l F
ra

m
e

Initial binary mask Optimized binary mask Initial binary mask Optimized binary mask

PSNR = 31.17, SSIM = 0.8351 PSNR = 29.05, SSIM = 0.9632PSNR = 31.98, SSIM = 0.8582 PSNR = 29.64, SSIM = 0.9686

PSNR = 30.86, SSIM = 0.8271 PSNR = 28.38, SSIM = 0.9584PSNR = 32.26, SSIM = 0.8670 PSNR = 29.58, SSIM = 0.9680

G
M

M
-1

D
IC

T-
L1

PSNR = 29.89, SSIM = 0.7824 PSNR = 27.41, SSIM = 0.9466PSNR = 30.75, SSIM = 0.8158 PSNR = 27.86, SSIM = 0.9540

PSNR = 29.00, SSIM = 0.7648 PSNR = 26.92, SSIM = 0.9436PSNR = 30.72, SSIM = 0.8153 PSNR = 27.79, SSIM = 0.9532

PSNR = 28.83, SSIM = 0.7613 PSNR = 26.85, SSIM = 0.9442PSNR = 30.11, SSIM = 0.8010 PSNR = 27.60, SSIM = 0.9542

PSNR = 28.15, SSIM = 0.7420 PSNR = 26.50, SSIM = 0.9395PSNR = 30.14, SSIM = 0.8039 PSNR = 27.58, SSIM = 0.9542

p
 =

 4
0

p
 =

 6
0

p
 =

 4
0

p
 =

 6
0

p
 =

 4
0

p
 =

 6
0

Fig. 6. Qualitative reconstruction performance. The figure shows reconstruction of a single frame for 2 test video sequences when using different reconstruction
algorithms and different mask initializations. The PSNR metric is measured in dB while the SSIM is unitless.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 10

Quantitative and qualitative results. Figure 4 shows
average reconstruction quality for each mask and algorithm
combination, using the PSNR and SSIM metrics. The
presented metrics refer to average performance for the
reconstruction of the first 32 frames of each test video
sequence, using 2 consecutive captured coded frames for
each of the eight masks for every algorithm. First, we note
that the DeepMasks perform consistently better compared to
the RandomMasks across all reconstruction algorithms and
initial percentage of nonzeros. In particular, we observe an
improvement around 1-2 dB, in terms of PSNR between the
trained and non-trained masks across all initial percentages
and algorithms. Furthermore, we observe that the decoder
FC4-1M demonstrates the highest PSNR and SSIM values
among all algorithms.

Figure 5 compares the PSNR for each of the 32 frames of 2
video sequences (“Horse” and “Porsche” sequences) using our
FC4-1M algorithm and the previous methods GMM-1 [48] and
DICT-L1 [19] between the RandomMasks and DeepMasks.
The varying PSNR performance across the frames of a 16
frame block is consistent for all algorithms and is reminiscent
of the reconstruction tendency observed in other video CS
papers in the literature [20], [17], [47], [48]. Please notice
that the scale on the vertical axes of the plot varies.

Finally, Figure 6 compares the reconstruction quality be-
tween the optimized and non-optimized masks for a single
frame from the 2 video sequences under different algorithms
and different mask initializations. Consistent with the PSNR
and SSIM results, it is clear from the visual evaluations that
reconstruction quality improves when using the optimized
masks, especially for the case when the initial percentage of
nonzeros is p = 60. In particular, background details of the
“Horse” sequence are more visible and letters in the “Porsche”
sequence appear sharper. At the same time, the proposed end-
to-end optimization using the deep network (FC4-1M) pro-
vides the highest visual quality among the candidate compared
algorithms. In general, it is observed that the optimized masks
reconstruct the frames with less blurring and sharper edges
than the non-optimized masks.

E. Training analysis

We start our analysis by examining the real-valued weight
histogram of the encoder (DeepMask-40) upon convergence
in Figure 7. First, we observe that negative values are more
frequent than positive ones, which suggests that zero elements
of the mask (after binarization) are more important than the
nonzero ones. More importantly, we observe that a number of
weights are around zero, hesitating between becoming negative
or positive, a phenomenon that was also reported in [40].

Average test MSE per epoch calculated on a validation test
set for DeepMask-40 and RandomMask-40 is shown in Fig-
ure 8. It is shown that the test error curve of the RandomMask-
40 is smooth while the DeepMask-40 is noisy. This is due to
the fact that many binary weights switch between 1 and 0
frequently, especially during the first epochs of training when
the learning rate has high values, thus constantly changing
the way the VCS measurements are performed. Furthermore,

−1 −0.5 0 0.5 1
0

20

40

60

80

100

Weight value

Fr
eq

ue
nc

y

Fig. 7. Histogram of the real-valued weights produced by the encoder neural
network for DeepMask-40. We report similar observations with [40] as we
found out that most of the weights have the tendency to become deterministic
(−1 and 1) and reduce the training error while some stay around zero.

0 100 200 300 400 500
−3.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

Epoch

A
ve

ra
ge

 te
st

in
g

M
SE

 (l
og

10
) DeepMask (p = 40)

RandomMask (p = 40)

Fig. 8. Test error curves between the RandomMask-40 decoder and
DeepMask-40 encoder-decoder calculated on a validation test set. The latter
provided lower test error upon convergence as is optimized end-to-end.

0 100 200 300 400 500
Epoch

0

10

20

30

40

50

60

70

Bi
na

ry
 w

ei
gh

t c
ha

ng
es

Fig. 9. Number of binary weight changes per epoch of DeepMask-40 encoder-
decoder. A large number of weights change in the first few epochs; this number
decreases and finally becomes zero in the last few epochs.

even at the later stages of training, many real-valued elements
of the encoder remain around zero, as observed in Figure 7.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 11

Epoch
0 100 200 300 400 500

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f n
on

ze
ro

 w
ei

gh
ts

DeepMask (p = 60)

DeepMask (p = 20)
DeepMask (p = 40)

DeepMask (p = 80)

Fig. 10. Percentage of nonzero binary values for DeepMasks. Irrespectively
to the initial nonzero percentage, DeepMasks converge to a point around 40%
nonzeros.

Therefore, during the binarization process some of the en-
coder’s binary weights change from zero to one and vice versa
even with very small learning rates. However, as the encoder’s
learning rate becomes really small the curve becomes smooth.
A better optimized learning rate decay schedule of the encoder
would have probably provided a smoother curve and perhaps
a higher performance. We leave this as a task for future
work as further investigation into this may be needed. Finally,
as showed in the reconstruction results, DeepMask performs
consistently better than RandomMask which also explains the
lower test MSE produced by the former during training.

Lastly, in Figure 9 we show the number of binary weights
that change from zero to one and vice versa per epoch. We
observe that a large number of weights change in the first few
epochs and this number decreases as the number of epochs
increases.

V. DISCUSSION

Having obtained better reconstruction performance using
the DeepMasks across a wide range of reconstruction
algorithms our next step is to analyze the masks produced by
the networks and highlight a few crucial points. Note that the
analysis provided below is based on the specific dataset and
MLP architecture used in this work. We start our analysis by
posing the following question.

Does DeepMask produce a unique sensing matrix
Φ? To answer this question we examine the differences
between the produced DeepMasks with respect to their
percentage of nonzero elements and to their support.

First, in Figure 10 we show the percentage of nonzero
binary weights per epoch for the different DeepMasks. This
figure allows us to examine uniqueness with respect to the
percentage of nonzero elements produced by each DeepMask.
We observe that the masks with p equal 40, 60 and 80 converge
to a percentage around 40%. The p = 20% mask though,
converges to a bit lower percentage (around 38% nonzero
binary elements).

(a) RM-20 (b) RM-40 (c) RM-60 (d) RM-80

(h) DM-80(g) DM-60(f) DM-40(e) DM-20

Sp
at

ia
l d

im
en

si
on

Time dimension

Fig. 11. The eight mask patterns produced in this work of size 16× 16. The
initial RandomMasks (RM) are presented on the top row while on the bottom
row we present the optimized DeepMasks (DM).

Next, Figure 11 demonstrates the four mask patterns pro-
duced in this work. The first row illustrates the RandomMasks
and the second row presents the four DeepMasks produced by
the proposed encoder-decoder neural network. All 4× 4× 16
masks are reshaped into a 16× 16 matrix for better visualiza-
tion by lexicography ordering each 4×4 mask at a given time
instance into a 16× 1 vector, which becomes a column of the
16 × 16 matrix. That is, the vertical direction denotes pixel
location while the horizontal direction denotes time. From the
visualization we deduce that although the masks generated
by the network converge to the same nonzero percentage
(as shown in Figure 10), their support is different. The fact
that the optimized masks contain a very similar percentage
of nonzeros while producing improved reconstruction quality
with various different reconstruction algorithms implies that
such percentage is the most appropriate one for the task
at hand. Similar observations about the ideal percentage of
nonzeros for VCS measurement matrices have been made
in [20], albeit deduced through heuristic experimentation.

Finally, from the visualization we deduct two important
findings:

• First, it is apparent that regardless of the initial realiza-
tion (shown in RandomMasks), the trained DeepMasks
produce a similar number of nonzero elements which
confirms our findings discussed earlier.

• Second, an important observation from Figure 11 is that
DeepMasks are smoother over time than the Random-
Masks. In other words in many rows the binary weights
seem to be sequential (or more structured) forming runs
of 1s and 0s. Again, such finding was heuristically
observed in [20] and some studies cited therein, fur-
ther strengthening our findings which are here obtained
through a machine learning approach.

To summarize, our observations above suggest that an
optimized mask design Φ for temporal VCS incorporates the
following two characteristics: 1) smoothness as explained
above and 2) percentage of nonzero elements around 40%.

Random seed selection. Finally, we wanted to confirm
that the results presented herein are not due to a specific

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 12

50

40

30

20

10

0

60

50

40

30

20

10

0

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ve

ra
ge

 P
SN

R
us

in
g

FC
4-

1M
A

ve
ra

ge
 P

SN
R

us
in

g
FC

4-
1M

Video sequence number Video sequence number

DeepMask (Seed 1) DeepMask (Seed 2)

Initial percentage of 1’s on mask: 20% Initial percentage of 1’s on mask: 40%

Initial percentage of 1’s on mask: 60% Initial percentage of 1’s on mask: 80%

Fig. 12. Comparison of the reconstruction performance of the proposed encoder-decoder architecture when using the optimized masks trained after initialization
with two different seeds. Average PSNR for the reconstruction of the first 32 frames of each one of the 14 test video sequences is presented and the values
are found to be very similar regardless of the starting binary values of the measurement matrix.

selection of the random seed, used to produce the initial
random masks. Therefore, we performed the whole training
process described in section IV using a second seed for
four new masks and compared the average reconstruction
performance using the trained network for all test video
sequences. The corresponding results are presented in
Figure 12 where it can be observed that the final performance
is very similar for both seeds. We do not include the results
of the competitive algorithms with this second initialization
but observed performance improvements through the new
optimized masks similar to the ones presented in Figure 4.

VI. CONCLUSIONS

In this paper, we proposed a new encoder-decoder neural
network architecture for video compressive sensing that is able
to learn an optimized binary sensing matrix. We evaluated
the proposed model on several video sequences and we
documented the superiority of the trained sensing matrices
over the random ones both quantitatively and qualitatively.
Our qualitative analysis of the trained model shows that the
optimized sensing masks converge to a similar number of
nonzero elements regardless of their initial parameters and that

they exhibit a smoothness property. The proposed architecture
has large potential for further analysis.

One limitation of our approach is that given a new com-
pression ratio to be tested, a new model must be trained. Our
next step is to explore ways to overcome this practical issue.
Perhaps, a first step towards this goal is to explore whether
fine-tuning of our networks to new compression ratios could
alleviate the requirement of training from scratch. Another
future direction is to examine the reconstruction performance
in real video sequences acquired by a temporal compressive
sensing camera.

REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, April 2006.

[2] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[3] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun,
K. F. Kelly, and R. G. Baraniuk, “Single-Pixel imaging via compressive
sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 83–91, Mar.
2008.

[4] A. C. Sankaranarayanan, C. Studer, and R. G. Baraniuk, “CS-MUVI:
Video compressive sensing for spatial-multiplexing cameras,” in Proc.
IEEE Conf. Computational Photography, Apr. 2012, pp. 1–10.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, SEPTEMBER 2017 13

[5] J. Wang, M. Gupta, and A. C. Sankaranarayanan, “LiSens - A scal-
able architecture for video compressive sensing,” in Proc. IEEE Conf.
Computational Photography, April 2015, pp. 1–9.

[6] H. Chen, M. S. Asif, A. C. Sankaranarayanan, and A. Veeraraghavan,
“FPA-CS: Focal plane array-based compressive imaging in short-wave
infrared,” in Proc. IEEE Conf. Comp. Vision Pattern Recognition, June
2015, pp. 2358–2366.

[7] E. Tsiligianni, L. P. Kondi, and A. K. Katsaggelos, “Preconditioning
for underdetermined linear systems with sparse solutions,” IEEE Signal
Process. Lett., vol. 22, no. 9, pp. 1239–1243, Sept. 2015.

[8] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof
of the restricted isometry property for random matrices,” Constructive
Approximation, vol. 28, no. 3, pp. 253–263, 12 2008.

[9] M. Elad, “Optimized projections for compressed sensing,” IEEE Trans.
Signal Process., vol. 55, no. 12, pp. 5695–5702, Dec. 2007.

[10] E. V. Tsiligianni, L. P. Kondi, and A. K. Katsaggelos, “Construction
of incoherent unit norm tight frames with application to compressed
sensing,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2319–2330, April
2014.

[11] J. Xu, Y. Pi, and Z. Cao, “Optimized projection matrix for compressive
sensing,” EURASIP J. Adv. Signal Process., vol. 2010, pp. 43:1–43:8,
Feb. 2010.

[12] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Effiicient
backprop,” in Neural Networks: Tricks of the Trade, This
Book is an Outgrowth of a 1996 NIPS Workshop. London,
UK, UK: Springer-Verlag, 1998, pp. 9–50. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645754.668382

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015, insight.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[15] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–
1149, June 2017.

[16] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Programmable
pixel compressive camera for high speed imaging,” in Proc. IEEE Conf.
Comp. Vision Pattern Recognition, June 2011, pp. 329–336.

[17] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro,
and D. J. Brady, “Coded aperture compressive temporal imaging,” Opt.
Express, vol. 21, no. 9, pp. 10 526–10 545, May 2013.

[18] L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-Shot compressed
ultrafast photography at one hundred billion frames per second,” Nature,
vol. 516, pp. 74–77, 2014.

[19] D. Liu, J. Gu, Y. Hitomi, M. Gupta, T. Mitsunaga, and S. K. Nayar,
“Efficient space-time sampling with pixel-wise coded exposure for high-
speed imaging,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 2,
pp. 248–260, Feb. 2014.

[20] R. Koller, L. Schmid, N. Matsuda, T. Niederberger, L. Spinoulas,
O. Cossairt, G. Schuster, and A. K. Katsaggelos, “High spatio-temporal
resolution video with compressed sensing,” Opt. Express, vol. 23, no. 12,
pp. 15 992–16 007, June 2015.

[21] A. Chakrabarti, “Learning sensor multiplexing design through back-
propagation,” in Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, 2016, pp. 3081–3089.
[Online]. Available: http://papers.nips.cc/paper/6251-learning-sensor-
multiplexing-design-through-back-propagation

[22] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Scholkopf, “A machine
learning approach for non-blind image deconvolution,” in Proc. IEEE
Conf. Comp. Vision Pattern Recognition, June 2013, pp. 1067–1074.

[23] J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural
network for non-uniform motion blur removal,” in Proc. IEEE Conf.
Comp. Vision Pattern Recognition, June 2015, pp. 769–777.

[24] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network
for image deconvolution,” in Adv. Neural Inf. Process. Syst. 27. Curran
Associates, Inc., 2014, pp. 1790–1798.

[25] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can
plain neural networks compete with BM3D?” in Proc. IEEE Conf. Comp.
Vision Pattern Recognition, June 2012, pp. 2392–2399.

[26] F. Agostinelli, M. R. Anderson, and H. Lee, “Adaptive multi-column
deep neural networks with application to robust image denoising,” in
Adv. Neural Inf. Process. Syst. 26. Curran Associates, Inc., 2013, pp.
1493–1501.

[27] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked Denoising Autoencoders: Learning useful representations in a

deep network with a local denoising criterion,” J. Mach. Learn. Res.,
vol. 11, pp. 3371–3408, Dec. 2010.

[28] J. R. Chang, C. Li, B. Póczos, B. V. K. V. Kumar,
and A. C. Sankaranarayanan, “One network to solve them
all - solving linear inverse problems using deep projection
models,” CoRR, vol. abs/1703.09912, 2017. [Online]. Available:
http://arxiv.org/abs/1703.09912

[29] C. Ledig, L. Theis, F. Huszar, J. Caballero, A. Aitken, A. Tejani, J. Totz,
Z. Wang, and W. Shi, “Photo-realistic single image super-resolution
using a generative adversarial network,” CVPR, 2017.

[30] D. Pathak, P. Krhenbhl, J. Donahue, T. Darrell, and A. A. Efros, “Context
Encoders: Feature learning by inpainting,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 2536–
2544.

[31] Z. Cui, H. Chang, S. Shan, B. Zhong, and X. Chen, Computer Vision –
ECCV 2014: 13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V. Cham: Springer International Pub-
lishing, 2014, ch. Deep Network Cascade for Image Super-resolution,
pp. 49–64.

[32] C. Dong, C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2016.

[33] Y. Huang, W. Wang, and L. Wang, “Bidirectional recurrent convolutional
networks for multi-frame super-resolution,” in Adv. Neural Inf. Process.
Syst. 28. Curran Associates, Inc., 2015, pp. 235–243.

[34] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, “Video super-
resolution with convolutional neural networks,” IEEE Transactions on
Computational Imaging, vol. 2, no. 2, pp. 109–122, June 2016.

[35] A. Mousavi, A. B. Patel, and R. G. Baraniuk, “A deep learning approach
to structured signal recovery,” CoRR, vol. abs/1508.04065, 2015.

[36] K. Kulkarni, S. Lohit, P. K. Turaga, R. Kerviche, and A. Ashok,
“Reconnet: Non-iterative reconstruction of images from compressively
sensed random measurements,” CoRR, vol. abs/1601.06892, 2016.

[37] H. Yao, F. Dai, D. Zhang, Y. Ma, S. Zhang, and Y. Zhang,
“Dr2-net: Deep residual reconstruction network for image compressive
sensing,” CoRR, vol. abs/1702.05743, 2017. [Online]. Available:
http://arxiv.org/abs/1702.05743

[38] M. Iliadis, L. Spinoulas, and A. K. Katsaggelos, “Deep fully-connected
networks for video compressive sensing,” CoRR, vol. abs/1603.04930,
2016.

[39] M. Courbariaux and Y. Bengio, “BinaryNet: Training deep neural
networks with weights and activations constrained to +1 or -1,” CoRR,
vol. abs/1602.02830, 2016.

[40] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Adv.
Neural Inf. Process. Syst. 28. Curran Associates, Inc., 2015, pp. 3123–
3131.

[41] Z. Lin, M. Courbariaux, R. Memisevic, and Y. Bengio, “Neural networks
with few multiplications,” CoRR, vol. abs/1510.03009, 2015.

[42] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,”
CoRR, vol. abs/1603.05279, 2016.

[43] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proc. Int. Conf. Machine Learning, 2010, pp.
807–814.

[44] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. Int. Conf. Artificial Intelligence
and Statistics, vol. 9, May 2010, pp. 249–256.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Neurocomputing:
Foundations of research.” Cambridge, MA, USA: MIT Press, 1988,
ch. Learning Representations by Back-propagating Errors, pp. 696–699.

[46] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in ICML (3), ser. JMLR Proceedings, vol. 28.
JMLR.org, 2013, pp. 1310–1318.

[47] J. Yang, X. Liao, X. Yuan, P. Llull, D. J. Brady, G. Sapiro, and
L. Carin, “Compressive sensing by learning a gaussian mixture model
from measurements,” IEEE Trans. Image Processing, vol. 24, no. 1, pp.
106–119, Jan. 2015.

[48] J. Yang, X. Yuan, X. Liao, P. Llull, D. J. Brady, G. Sapiro, and L. Carin,
“Video compressive sensing using gaussian mixture models,” IEEE
Trans. Image Processing, vol. 23, no. 11, pp. 4863–4878, Nov. 2014.

[49] J. M. Bioucas-Dias and M. A. T. Figueiredo, “A New TwIST: Two-step
iterative shrinkage/thresholding algorithms for image restoration,” IEEE
Trans. Image Process., vol. 16, no. 12, pp. 2992–3004, Dec. 2007.

[50] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A matlab-like
environment for machine learning,” in BigLearn, NIPS Workshop, 2011.

