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ABSTRACT

In this work we present a general framework for robust error esti-
mation in face recognition. The proposed formulation allows the
simultaneous use of various loss functions for modeling the residual
in face images, which usually follows non-standard distributions, de-
pending on the image capturing conditions. Our method extends the
current vast literature offering flexibility in the selection of the resid-
ual modeling characteristics but, at the same time, considering many
existing algorithms as special cases. As such, it proves robust for
a range of error inducing factors, such as, varying illumination, oc-
clusion, pixel corruption, disguise or their combinations. Extensive
simulations document the superiority of selecting multiple models
for representing the noise term in face recognition problems, allow-
ing the algorithm to achieve near-optimal performance in most of
the tested face databases. Finally, the multi-model residual represen-
tation offers useful insights into understanding how different noise
types affect face recognition rates.

Index Terms— face recognition, sparse representation, robust
representation, error correction

1. INTRODUCTION

Robust error estimation for sparse representation-based classifica-
tion has been recently investigated in Face Recognition (FR) given
frontal views with varying illumination and occlusion as well as dis-
guise [1, 2, 3, 4]. Previous sparse representation-based classifiers
solve a regularized regression model, with the coefficients being ei-
ther sparse or non-sparse, under the assumption that a face can be
represented as a linear combination of training faces, as in Sparse
Representation-Based Classification (SRC) [5].

Let each face image be of size j × k = d and y ∈ Rd denote
the face test sample. Let T = [T1, . . . , Ti, . . . , Tc] ∈ Rd×n denote
a matrix (dictionary) with the set of samples of c subjects stacked in
columns. Ti ∈ Rd×ni denotes the set of samples of the ith subject,
such that,

∑
i ni = n.

In SRC the regression model is formulated as,

y = Ta + n, (1)

where n ∈ Rd is the dense error and a ∈ Rn is the coefficient
vector to be estimated. In the SRC formulation of model (1), a is a
sparse vector with nonzero elements corresponding to a few samples
in T. The coefficients of a can be found by solving the optimization
problem,

min
a
‖y −Ta‖22 + λ ‖a‖1 , (2)

where λ > 0. In order to enforce sparsity, `1 optimization algo-
rithms [6, 7] can be employed. The final step of the SRC method

identifies the subject by selecting the face class that yields the mini-
mum reconstruction error.

Robust error estimation methods [1, 2, 3, 4] have been proposed
in order to make regression models more robust to outliers (e.g.,
occlusions) than the SRC algorithm. These methods introduce a
penalty function to the regression model to characterize the residual
error which is often not normally distributed [2]. A prior assump-
tion of the distribution of the error is needed in order to estimate it
jointly with the representation coefficients. For example, [8] models
y −Ta as a Laplace distribution using the `1-norm. In a more gen-
eral formulation, other methods proposed to use penalty functions
based on M-Estimators [3].

Furthermore, researchers, have investigated the use of the whole
structure of the residual in order to characterize contiguous occlu-
sions [9, 10]. In [9] the error image is assumed to be low-rank and
the residual is modeled using the nuclear norm. In order to jointly
handle the pixel-level sparse noise and image-level structural noise,
the authors in [10] propose a two norm regression model to charac-
terize the residual.

The regularization of the residual with one prior distribution
might not be sufficient to characterize the residual error [10]. There-
fore, in this work we propose a robust multi-model representation-
based classifier in which we allow the residual to be described by
two penalty functions. In contrast to [10] which combined `1 and nu-
clear norms, we propose a more general framework, where various
residual metrics, proven to be robust [3] in FR, are utilized. We in-
vestigate the combination of error distributions, e.g., Huber [11] and
Negative Gaussian [3], or Nuclear [9] and Negative Gaussian [3], to
model the error residual for different types of occlusions and varia-
tions in facial expressions.

2. PROPOSED METHOD

Various existing face recognition schemes have proven robust in
modeling the noise characteristics for a range of image corruption
types. Nevertheless, most presented approaches are mainly tested
on cases where the noise fits their residual model assumptions.
For example, the authors in [9] consider a low-rank regularizer for
the noise term, hence being successful at recognizing faces under
block-occlusion. At the same time, the authors in [10] combine
low-rankness and sparsity in order to extend their recognition rates
in cases such as random pixel corruptions with block-occlusion.
However, when the percentage of corrupted pixels increases signif-
icantly, failing to satisfy the low-rank assumption, recognition rates
can reduce dramatically.

We aim at presenting a general framework for handling most
types of query image corruptions by suggesting a multi-model rep-
resentation of the residual term. In this way, we relax the modeling



constraints of the residual and enable extra degrees of freedom so
that the noise term can be described with non-standard penalty func-
tions in order to handle mixed variations in the captured scene.

Thus, we propose a formulation where two penalty functions are
incorporated for better characterizing the residual term y−Ta. The
proposed function to be minimized is written as,

J(a) = Φ1(y −Ta) + Φ2(y −Ta) + λϑϑ(a), (3)

where function Φk represents a specific potential loss function and
is selected from a variety of candidates [3]. The function ϑ(·), used
to regularize the coefficients a, belongs to the class of `p norms(
‖ap‖

1
p

)
and λϑ > 0. The formulation above allows for the com-

pact and general representation of many existing algorithms in the
face recognition literature. For example:

• For Φ1(x) = ||x||22, Φ2(x) = λ∗||TM (s)||∗ and ϑ(a) =
‖a‖22 with TM being an operator that transforms its vector
argument into a matrix of appropriate size, || · ||∗ being the
nuclear norm and λ∗ > 0, it is the low-rank regularized re-
gression (LR3) [9] which is formulated as,

min
a
‖y −Ta‖22 + λ∗ ‖TM (y −Ta)‖∗ + λϑ ‖a‖22 . (4)

• For Φ1(x) = ||x||1, Φ2(x) = λ∗||TM (s)||∗ and ϑ(a) =
‖a‖22, it is the nuclear-`1 regression NL1R [10] which is for-
mulated as,

min
a
‖y −Ta‖1 + λ∗ ‖TM (y −Ta)‖∗ + λϑ ‖a‖22 . (5)

• For Φ2(x) = 0, it is the robust representation problem [1, 2,
3, 4] formulated as,

min
a

Φ1(y −Ta) + λϑϑ(a). (6)

Although specific cases of the proposed formulation have been
presented in the literature our framework generalizes on these results
considering such formulations as a specific case while allowing the
selection of application specific residual functions.

In previous works authors have chosen different functions ϑ(a)
to regularize the coefficients a. In the collaborative representation-
based classification with regularized least squares (CRC-RLS) [12]
the authors considered to solve the SRC problem with ϑ(a) =
||a||22. In [1, 3] ϑ(a) = ||a||1 was used, combined with different
loss functions, while in the regularized robust coding (RRC) [2],
ϑ(a) = ||a||22 was used. In correntropy-based sparse representation
(CESR) [4], ϑ(a) was chosen to be the indicator function of the non-
negative orthant Rn+, such that a nonnegative a ≥ 0 regularization
term was enforced.

Recognition rates on human faces with varying illumination and
occlusions as well as disguise, indicate that the `2-norm is more ro-
bust than the sparse coding methods presented in [13, 12, 9]. As such
we decided to use ϑ(a) = ||a||22 as a regularizer for our experiments.

In this work, we consider function Φk(x) to be defined as,

Φk(x) ≡
d∑
i=1

φk(xi) = min
e

1

2
‖x− e‖22 + ϕk(e). (7)

The function φk : R → R is called the Moreau envelope of the
penalty function ϕk(·). Thus, ϕk(·) is the dual function of φk(·)
and the proximal mapping of ϕk(·) is defined as,

proxϕk
(x) = argmin

e

1

2
‖x− e‖22 + ϕk(e). (8)

Table 1: Some choices of φk(x) with Φk(x) ≡
d∑
i=1

φk(xi) and their

proximity operators proxϕk
(x) = x− φ′k(x). σ > 0 and λ > 0.

Estimator φk(x) proxϕk
(x)

Neg. Gaussian (σ
2

2
)(1− exp(−x2/σ2)) x− x exp(−x2/σ2)

Huber

x
2/2 |x| ≤ λ

λ|x| − λ2

2
|x| > λ

0 |x| ≤ λ

x− λsign(x) |x| > λ

Table 2: Choice of proximity operators when ϕk(x) is a general
norm ||x||. Lλ∗(·) denotes the SVD decomposition of its matrix
argument.

Estimator Proximity Operator

Nuclear λ∗||TM (x)||∗ Lλ∗(TM (x)) = UXSλ∗(ΣX)VT
X

Sλ∗(ΣX) = sign(xij) max(0, |xij | − λ∗)
`1 λ‖x‖1 sign(xi) max (0, |xi| − λ)

Some choices of Φk, utilized in equation (7), and their corresponding
proximal mappings are presented in Table 1. For the case when Φk
is a general norm || · ||, equivalent results are shown in Table 2.

By using (7) we can write the proposed function in (3) as the
augmented function,

J(a, e) =
1

2
‖y −Ta− e‖22 + ϕ1(e)

1

2
‖y −Ta− e‖22 + ϕ2(e) + λϑϑ(a),

(9)

A local minimizer (a,e) can be calculated alternating in two
steps; in step one, e is updated by fixing the coefficient vector a
and in step two the vector a is updated by fixing e. However, since
there are two penalty functions in the above formulation we use a
variable splitting technique [14]. Thus, a local minimizer (a,e) of
(9) can be approximated by setting y−Ta = e and introducing the
auxiliary variable e = z such that (9) is reformulated as,

minimize
a,e,z

ϕ1(e) + ϕ2(z) + λϑϑ(a)

subject to y −Ta = e, e = z.
. (10)

The problem in (10) allows the implicit incorporation of various loss
functions φk(·) through their dual potential functions ϕk(·).

3. OPTIMIZATION

The problem in (10) can be solved by the Alternating Direction
Method of Multipliers (ADMM) [14] which is intended to blend
the decomposability of dual ascent with the superior convergence
properties of the method of multipliers. In the ADMM formulation
of (10), a, e and z are updated in an alternating fashion. As in the
method of multipliers, it can take the form of augmented Lagrangian,

L(e, z,a) = ϕ1(e) + ϕ2(z) + uT1
(
y −Ta− e

)
+
ρ

2
‖y −Ta− e‖22 + uT2

(
e− z

)
+
ρ

2
‖e− z‖22 + λϑϑ(a),

(11)



where ρ > 0 is a penalty parameter, and u1 and u2 are the dual
variables. Using the scaled dual variables y1 = 1

ρ
u1,y2 = 1

ρ
u2,

one can express the ADMM updates as,

et+1 = argmin
e

L(e, zt,at,y1
t,y2

t), (12a)

zt+1 = argmin
z

L(et+1, z,y2
t), (12b)

at+1 = argmin
a

L(et+1,a,y1
t), (12c)

y1
t+1 = y1

t + y −Tat+1 − et+1, (12d)

y2
t+1 = y2

t + et+1 − zt+1. (12e)

Optimization is conducted in four steps as,

• Step 1 - Solve (13) to update et+1,

et+1 = argmin
e

1

2
‖y −Ta + y1 − e‖22

+
1

2
‖z− y2 − e‖22 +

1

ρ
ϕ1(e)

et+1 =
1

2
proxϕ1/ρ

(y −Ta + y1 + z− y2) . (13)

• Step 2 - Solve (14) to update zt+1,

zt+1 = argmin
z

1

2
‖e + y2 − z‖22 +

1

ρ
ϕ2(z)

zt+1 = proxϕ2/ρ
(e + y2) . (14)

• Step 3 - Solve (15) to update at+1,

at+1 = argmin
a

1

2
‖y −Ta− e + y1‖22 +

λ

ρ
ϑ(a)

at+1 = proxϑλ/ρ(y1 − e− y) . (15)

• Step 4 - Update multipliers y1 and y2 using equations (12d)
and (12e).

For the purpose of this paper, in order to guarantee convergence
of the optimization problem (10) using ADMM, it is sufficient to
enforce appropriate termination criteria. In our experiments we used:
‖y −Ta− e‖∞ ≤ ε and ‖e− z‖∞ ≤ ε, where ε = 10−7.

Furthermore, we adopt the same classification scheme as in SRC
(e.g., reconstruction error). The classification is given by computing
the residuals e for each class i as,

ei(y) =
‖y − e− Tiai‖2

‖ai‖2
, (16)

where ai is the segment of final estimated a associated with class i.
Finally, the identity of y is given as,

Identity(y) = argmin
i
{ei}. (17)

4. EXPERIMENTAL RESULTS

In this section we present experimental results on publicly available
databases, AR [15], Extended Yale B [16] and and Multi-PIE [17], to
show the efficacy of the proposed classifiers. We compare our meth-
ods with the non-robust methods SRC [5] and CRC-RLS [12] and

with the robust methods HQ-Additive [3]1, HQ-Multiplicative [3],
CESR [4], RRC L1 [2], RRC L2 [2], LR3 [9] and NL1R [10]. We
evaluate our method under illumination, random block occlusion,
random pixel corruption and an experiment with mixed variations
including changes in illumination, expressions and facial disguises
(e.g., sunglasses and scarves).

For all methods, we used the solvers and parameters given by
the authors in the corresponding papers and source codes. For exper-
iments on datasets that were not originally conducted by the authors,
we did a parameter search in order to identify the optimal parame-
ters.

In our robust error correction (REC) framework we use a
combination of two metrics to describe the error: Nuclear norm
and negative-Gaussian (REC-LG) or Huber and negative-Gaussian
(REC-HG). For completeness, we also consider the single metric
case where only the negative-Gaussian model is used (REC-G).
We investigate the recognition performance of our chosen functions
from Table 1 and we report the results. More error functions can
be found in the literature [18, 3]; however, the scope of this work
is not to report results from an extensive list of error functions,
but to build a general framework for their utilization and to thor-
oughly investigate the ones that proved more robust throughout our
experiments.

In all experiments, the input to our classifiers were pixel val-
ues, we set ρ = 1 and initialized all variables to zero. In the
case with the Negative-Gaussian loss function, we set σ2 =
γ × mean(‖y −Ta‖22), as in [3], where γ is a tuning parameter
between [0.2, 0.5].

4.1. Recognition under Illumination variations

Experiments with illumination variations were conducted on the
Multi-Pie dataset. The Multi-PIE database [17] contains images of
337 subjects captured in 4 sessions with simultaneous variations in
pose, expression and illumination. In the experiments we used 249
subjects in Session 1, and a subset of that in Sessions 2 to 4. We
followed the experimental setup of [12], and used 14 frontal images2

per subject with neutral expressions from Session 1 for training, and
used 10 frontal images3 per subject from Sessions 2 to 4 for test-
ing. We used cropped face images with dimensions 50 × 41 pixels.
Recognition rates are shown in Table 3 for various methods.

We observe that our proposed methods REC-HG and REC-G
achieve the best results. This indicates that the negative-Gaussian er-
ror metric combined with the `2 regularization on a, models illumi-
nation variations adequately. Another interesting observation is the
fact that when low-rankness is combined with the negative-Gaussian
error metric (REC-LG), it performs better than when low-rankness
is combined with sparsity (NL1R).

4.2. Recognition under Block Occlusions

As in [2, 5, 9, 10], we chose Subsets 1 and 2 of Extended Yale B for
training and Subset 3 for testing in order to evaluate the performance
of the algorithms on occluded images. We resized the images to 96×
84 pixels. Block occlusion was tested by placing an unrelated square
block image on each test image. The location of the occlusion was
randomly chosen for each image and was unknown during training.

1The Welsch function was used as it achieved the best performance. In
this work we call the Welsch function negative-Gaussian.

2Illuminations 0,1,3,4,6,7,8,11,13,14,16,17,18,19.
3Illuminations 0,2,4,6,8,10,12,14,16,18.



Table 3: Recognition Rates under Illumination variations.

Sessions Session 2 Session 3 Session 4
Accuracy Accuracy Accuracy

SRC [5] 95.48% 92.13% 95.71%
CRC-RLS [12] 94.16% 87.63% 91.83%
HQ-Additive [3] 95.84% 94.63% 97.14%
HQ-Multiplicative [3] 96.51% 94.94% 97.54%
CESR [4] 95.00% 92.38% 95.94%
RRC L1 [2] 96.51% 94.50% 97.31%
RRC L2 [2] 95.78% 90.94% 96.51%
LR3 [9] 94.82% 90.44% 94.80%
NL1R [10] 94.54% 89.56% 94.63%
REC-HG 96.93% 95.81% 98.51%
REC-LG 96.27% 90.56% 94.97%
REC-G 96.99% 96.19% 98.40%

Recognition rates for 50% block ooclusion are shown in Table 4
(first column) for the various methods.

One of the highlights of our proposed method is that we achieved
almost 100% accuracy (REC-HG) on images with 50% block occlu-
sion on the Yale B database.

4.3. Recognition under Pixel Corruption

For the pixel corruption experiments we used Subsets 1 and 2 of the
Extended Yale B for training and Subset 3 for testing, and we resized
the images to 96× 84 pixels as in [2, 5]. A percentage of randomly
chosen pixels from each of the test images was corrupted by replac-
ing those pixel values with independent and identically distributed
samples from a uniform distribution between [0, 255]. The percent-
age of corrupted pixels was 90 percent. Recognition rates are shown
in Table 4 (second column) for the various methods.

It is clear from the results that this was the hardest experiment
that we ran. Methods that use low-rank as an error metric, perform
poorly. We attribute this to the fact that when images are 90% cor-
rupt, modeling the error as low-rank is severely inadequate. Com-
paring the results for RRC L1, REC-HG and REC-G, it is not clear
if the choice of the error metrics or the regularizer of the coefficients
is more important, thus these types of experiments need further in-
vestigation.

4.4. Recognition under Mixed Variations

This experiment is a reproduction of the experiment in section 5
of [13]. The AR database consists of over 3000 frontal images of
126 individuals (26 images per individual). Each individual partici-
pated in two sessions separated by two weeks, i.e., 13 images were
taken at each session. The faces in AR contain variations such as
changes in illumination, expressions and facial disguises (e.g., sun-
glasses or scarves). In our experiments, 100 subjects were chosen
randomly (50 male and 50 female). For each subject, we randomly
permuted the 26 images, and then took the first half for training and
the rest for testing. Thus, we had 1300 training and 1300 testing
samples. For statistical stability, we generated 10 different training
and testing dataset pairs. The images were cropped to have dimen-
sions 60× 43 pixels and converted to gray-scale. Recognition rates
are shown in Table 4 (third column) for the various methods.

The fact that images are corrupted with various forms of noise
suggests that a two metric model would better capture the error. This
however, is not the case for any two metrics. The results verify this
claim as the two metric method REC-HG performs better than REC-

Table 4: Recognition Rates and Time Performance under 50% oc-
clusion, 90% pixel corruption and mixed variations.

Variation 50% Occlusion 90% Corruption Mixed Variations
Accuracy Time Accuracy Accuracy

SRC [5] 54.72% 1.00s 7.25% 97.80% ±0.31
CRC-RLS [12] 47.03% 0.02s 44.40% 96.72% ±0.32
HQ-Additive [3] 94.07% 2.70s 42.64% 96.13% ±0.71
HQ-Multiplicative [3] 95.60% 10.00s 51.21% 96.80% ±0.54
CESR [4] 57.40% 0.70s 41.50% 71.43% ±1.68
RRC L1 [2] 95.82% 10.30s 83.74% 96.26% ±0.51
RRC L2 [2] 95.16% 8.80s 55.38% 98.61% ±0.23
LR3 [9] 96.48% 4.10s 7.69% 98.34%±0.41
NL1R [10] 93.63% 4.30s 7.47% 98.35% ±0.40
REC-HG 99.56% 3.01s 87.69% 98.68%±0.27
REC-LG 97.36% 4.40s 7.03% 98.34% ±0.41
REC-G 99.56% 3.00s 87.91% 98.43% ±0.34
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Fig. 1: Example face reconstructions for challenging cases of test
samples for our proposed approaches REC-HG and REC-LG as well
as the compared error correction algorithms NL1R [10] and LR3 [9].

G in this case, but the two metric method REC-LG performs on par
with LR3.

Overall our proposed methods achieved high recognition rates
across all the experiments that we conducted. Figure 1 shows chal-
lenging cases in which our algorithm reports superior performance.

4.5. Computational Cost

Table 4 (first column) summarizes the time experiments we con-
ducted on the extended Yale B database with 50% block occlusion.
A first observation is that RRC L1, RRC L2 and HQ-Multiplicative
are a lot more computationally expensive than our approaches.
Methods that modeled error as low rank (NL1R and REC-LG) were
more expensive than methods that used other error metrics, due
to the fact that each iteration required an SVD decomposition. The
cheapest method by far was CRC-RLS, however, it also achieved the
lowest recognition rate. As is clear from Table 4 our proposed meth-
ods REC-HG, REC-LG and REC-G strike a good balance between
recognition rate and computational cost.

5. CONCLUSIONS

In this work we presented a general framework for incorporating
multi-model representation of the residual in face recognition. A vast
number of existing methods are special sub cases of the proposed
approach for specific choices of loss functions. The experimental re-
sults support the claim that the multi-modeling of the residual term
combined with the `2 regularization of the coefficient vector can be
beneficial and more robust across a multitude of databases. We be-
lieve that this framework will extend and ease further research in
face recognition algorithms.
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