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ABSTRACT

Video retrieval and video copy detection are well studied problems.
The goal is to find the matching video in a database from a given
query video. Typically, these query videos are short and aligning
the query video is of secondary importance. Short sequences can be
aligned using dynamic time warping. But, since time and memory
usage increases quadratically with the length of the sequences, such
process is not suitable for the alignment of two full length movies.
A typical feature film is between 70 and 210 minutes long. Our goal
is to find an accurate frame-by-frame alignment of a full length orig-
inal film and a copy that has inserted and deleted sequences (e.g.,
commercial breaks or censorship), as well as differences in quality,
format and framerate. We propose a fast, robust and memory ef-
ficient video sequence alignment algorithm which has linear space
and time complexity.

Index Terms— Video Alignment, Sequence Alignment, Keyframe
Extraction, Dynamic Time Warping, A*

1. INTRODUCTION

Dynamic Time Warping (DTW) [1] is used to find the best possi-
ble alignment of two similar sequences. It has been widely used in
many tasks e.g., DNA sequence alignment [2] or disparity estima-
tion [3]. DTW can be depicted as a path finding problem (see Figure
2), where we try to find the optimal path from the lower left corner
to the upper right corner in a matrix. The time and space complexity
of DTW is given as O(NM), where N and M are the lengths of
the sequences or the size of the matrix. The Sakoe-Chiba band [4]
and the Itakura Parallelogram band [5] address this issue by limit-
ing the search space, but they are based on assumptions that do not
necessary hold for video alignment. An extremely fast version of
DTW is introduced in [6]; however this method uses a sliding win-
dow approach which is not suitable for large insertions and deletions.
Another algorithm is introduced in [7], which uses a hierarchical ap-
proach to approximate DTW. A tradeoff is a possible loss of accu-
racy. Our proposed video sequence alignment algorithm (VSA) is
based on the A* path finding algorithm. A* reduces the alignment
time without any loss of accuracy [8]. We extend the A* algorithm
by dividing the matrix (Figure 2) into Blocks and adding an abstrac-
tion level on top of the matrix. The idea is similar to the idea of [7],
but without any loss of accuracy. Our A* extension (Block A*) fur-
ther reduces runtime and memory usage compared to the standard
A* to a high extend.

In order to increase accuracy, we add an additional keyframe
matching step, which creates a coarse alignment by using only
keyframes instead of every single frame. We modify the standard
DTW algorithm for the keyframe alignment to take into account the

Step 2:
Keyframe 
Matching

Step 3:
Block A*

Mask with Reduced
Search Space

OUTPUT: 
Final Alignment Result

INPUT:
Two Video Sequences

Step 1:
Feature 

Extraction

Features

0

1000

2000

3000

4000

5000

6000

Fig. 1. Proposed Algorithm

discontinuity of keyframes. The modification is similar to combi-
national subsequence matching (CSM) proposed in [9]. Whereas
CSM finds an approximation to the alignment by conversion into
a linear programming problem, we propose a parameter-less dy-
namic programming approach. Video copy detection and video
retrieval are related to our problem and have been studied thor-
oughly [10, 11, 12]. However, frame-by-frame alignment is usually
of secondary importance. Furthermore they are usually evaluated on
short clips such as trecvid [13] and not designed to align two long
videos.

The main contributions of this paper are the keyframe matching
using path extension and a parameter-free DDTW for the keyframe
matching, which outperforms the standard DTW in terms of accu-
racy while maintaining the same space and time complexity, and
the Block A* approach, which significantly reduces the time and
space requirements of the video alignment algorithm. To the best of
our knowledge, A* has not been used before to speed up sequence
alignment. The paper is organised as follows. In Section 2 we briefly
introduce related work and in Section 3 we explain our proposed al-
gorithm. Sections 3 contains our results and experimental evaluation
and Section 4 concludes the paper.
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2. RELATED WORK

2.1. Dynamic Time Warping (DTW)

We denote two time series as X = [x1, x2, ...xN ] ∈ Rl×N and
Y = [y1, y2, ...yM ] ∈ Rl×M , where N and M are the lengths of
the time series and l the feature dimension. In the video alignment
problem, N and M are the number of frames and xn and ym are the
feature vectors of each frame. For the alignment of the sequences X
and Y, we create a cost matrix D with the dimensions N ×M . We
will refer to the matrix elements as nodes. Each node d(n,m) in D
is calculated as a similarity measure of the frames xn and ym and
represents the cost of aligning the two frames. In order to align the
two sequences, we try to find a path p from the lower left corner to
the upper right corner of the matrix (see Figure 2) that minimizes the
sum of the nodes along the path.

DTW (X,Y ) = min
∑

(n,m)∈p

d(n,m) (1)

The movement steps are restricted to positive horizontal, vertical or
diagonal movements to neighboring nodes. To find the best possible
path, we use dynamic programming. We define a new matrix G,
whose elements g(n,m) contain the total cost of the optimal path
from the start node to the node (n,m). We calculate each node of G
with the following recursive formulation:

g(n,m) = d(n,m) +min


g(n− 1,m)

g(n− 1,m− 1)

g(n,m− 1)

(2)

The value of the top right node of the matrix G corresponds to the
total alignment cost. For further details about the DTW algorithm,
we refer to [1] and [14].

2.1.1. Adaption for Video Alignment (DTW W)

We adjusted Equation 2 to make it more suitable for our task and
refer to it as DTW W. Diagonal moves in the path correspond to a
match in the sequences, whereas vertical or horizontal moves corre-
spond to an insertion or a deletion of frames, respectively. The value
d(n,m) is not meaningful for non-diagonal movements, because we
do not care about the similarity of mismatching frames. We therefore
replace d(n,m) in equation (2) by a constant penalty W ,

g(n,m) = min


g(n− 1,m) +W

g(n− 1,m− 1) + d(n,m)

g(n,m− 1) +W

(3)

The cost to move from (n−1,m−1) to (n,m) via node (n−1,m)
is given by W + W . The cost of a diagonal move in case of a
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Fig. 3. Path estimation with Keyframes: (a) DDTW on keyframes,
(b) mapping of keypoints from the keyframe sequence cost matrix to
the full sequence cost matrix, (c) connect keypoints to complete the
path estimate (d) extend line with morphological operation dilation

match is given by d(n,m). In order to guarantee that the inequality
2W > d(n,m) always holds in case of a match, we can define a
lower bound for W

Wmin = dmax/2, (4)
where dmax is the maximal tolerable value for d(n,m) to be con-
sidered a match. In practice we can simply set W = Wmin.

3. PROPOSED ALGORITHM FOR VIDEO ALIGNMENT

Figure 1 shows an overview of the proposed algorithm. It is divided
into feature extraction, keyframe matching and Block A*. We will
not describe the feature extraction, as it is outside the scope of this
paper. Our method can be applied with any type of feature as an
input. Instead we focus on the performance of the alignment algo-
rithm. The following subsections describe the keyframe matching
and Block A* algorithm in details.

3.1. Keyframe Matching

The goal of the keyframe matching step is to create an estimate of
the final alignment path in order to reduce the search space for the
refinement of the alignment path to a relatively narrow band. The
keyframe matching consists of three steps: keyframe extraction, Dis-
continuous Dynamic Time Warping (DDTW) and path extension.
For the keyframe extraction, we implemented an algorithm based on
the shot detection method described in [15]. The details of the other
two step are described in the following sections.

3.1.1. Discontinuous Dynamic Time Warping (DDTW).

We define two sequences Xk = [xk1 . . . xkn . . . xkNk ] ∈ Rl×Nk ,
and Yk = [yk1 . . . ykm . . . ykMk ] ∈ Rl×Mk , where xkn and ykm
are the keyframes from X and Y, and Nk and Mk are the num-
ber of keyframes. For the keyframe alignment, we do not enforce
movements to neighboring nodes anymore. Instead we require that
every node along the shorter dimension is assigned exactly to one
node along the longer dimension. The proposed DDTW turned out
to be far more robust and accurate than the standard version, and it
is parameter-free and more tolerant towards mismatched keyframes.
For Mk ≤ Nk, the recursive formula is described as

g(n,m) =

{
d(n,m) m = 1

d(n,m) + mini=1..n{g(i,m− 1)} otherwise

(5)
Directly implemented, this formulation has complexity of O(MkN

2
k ).

But we can express equation (5) as

(6)g(n,m)

=


d(n,m) m = 1

d(n,m) + min

{
g(n− 1,m)− d(n− 1,m)

g(n,m− 1)
otherwise



Equation 6 reduces the complexity to O(MkNk).

3.1.2. Path Extension

To create a path estimate, we project the nodes from the keyframe
alignment path (xn, ym) (Figure 3a) back to the coordinates (n,m)
in the full matrix with dimension N×M (Figure 3b). Then we create
a path estimation by connecting all the projected nodes (Figure 3c).
As a last step, we extend the path with the morphological operation
dilation (Figure 3d). The size of the structure element which is used
for opening depends on the direction of the line. We calculate the
scaling factor si−1,i for the line between keypoint i− 1 and i of the
structure element with the equation

si−1,i = C ·
(

vi−1,i

||vi−1,i||
· u
||u||

)−2

, (7)

where C is a parameter which accomodades the uncertainty in the
path estimation and vi−1,i is the vector from keypoint i− 1 to i. We
use the result shown in Figure 3d as a mask for the Block A* algo-
rithm described in Section 3.2. Specifically, the Block A* algorithm
will only consider the masked region as a valid region for the path,
which is limited by the path length and the size of the structure el-
ement. This step reduces the time- and memory complexity of the
Block A* algorithm to O(M +N).

3.2. Block A* Algorithm

3.2.1. Standard A*

The A* algorithm [8] is an extension of Djikstra’s path finding al-
gorithm [16]. The A* algorithm finds the path from the start node
to the goal node by using a best-first approach. It follows the path
with the lowest estimated alignment cost (f -score), while it stores
potential alternative paths in a priority queue, which is known as the
open set.

Beginning at the start node, in every iteration it selects the node
with the next best f -score, and calculates the f -score of its neigh-
bors. All new calculated f -scores are stored in the open set while
the f -score of the just selected node is deleted from the open set.

The f -score f(n,m) is calculated as

f(n,m) = g(n,m) + h(n,m), (8)

where g(n,m) is the cost from the start to the current position calcu-
lated with equation (3) and h(n,m) is the heuristic cost, an estimate
of the cost for the residual path from the current position to the goal
(see Figure 4). A* is admissible or optimal, as long as the heuristic
cost function is admissible [17]. An admissible heuristic means, that
it has to be an underestimate of the actual alignment cost.

3.2.2. Heuristic Cost Function h.

In order for the Block A* algorithm to find the path with the minimal
cost, we need a heuristic cost function (h-score) that is admissible.
The lowest possible cost for a diagonal movement is 0. The cost
for a single nondiagonal movement step is W (from Equation 3).
Following that, we define the heuristic cost as

h(n,m) = abs((N − n)− (M −m)) ·W (9)

where N and M are the sequence lengths.

Fig. 4. Comparison of A* and Block A* algorithm. Left: The gray
shaded nodes were already evaluated, the blue node (n,m) is the cur-
rent node. Right: The gray shaded block on the left is already eval-
uated. The framed block is the current block. All the blue shaded
nodes are considered for the f-score calculation

3.2.3. Block A* Extension

The Block A* algorithm is derived from the standard A* algorithm
[8]. Instead of dealing with single nodes, we group them into blocks
of K ×K nodes and apply the A* algorithm directly to the blocks.
Instead of calculating the f -score for each node, we define the f̂ -
score, which is equivalent to an f -score for the whole block.

3.2.4. Calculation of Block f̂ -score

For a selected block, we first calculate the g(m,n) values for every
node within that block with DTW W. Then we calculate the f̂ -score
as the minimum f -score from the nodes of the top and right row (see
blue nodes in Figure 4)

f̂ = min


f(K, i), i = 1...K − 1

f(K,K)

f(j,K), j = 1...K − 1

(10)

where i is the row index of the node in the right column, j the column
index of the node in the top row of the current block and K is the
block size. Combining equations 8 and 10, we can express f̂ as

f̂ = min


g(K, i) + h(K, i), i = 1...K − 1

g(K,K) + h(K,K)

g(j,K) + h(j,K), j = 1...K − 1

(11)

While maintaining the same accuracy, the block A* architecture re-
duces the maximal length of the open list priority queue1 by a fac-
tor K2 and allows the calculation of independent blocks in parallel,
which results in a significant speed boost.

4. EXPERIMENTAL EVALUATION

In this Section we present the details of the experimental setup to
evaluate the performance of the Video Alignment algorithm. For
all experiments in Section 4, we used the same features. We down-
sampled the frames to a size of 8 × 4 pixels and then normalized
the pixels with min-max normalization. Stacked into a vector, this
results in a feature size of 8× 4× 3 values per frame. For the align-
ment cost / feature similarity we used the L1 distance between the
feature vectors.

1Although priority queue implementations are generally very efficient,
they become slow when they grow very large
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Fig. 5. Keyframe alignment path: The left image shows the cost
matrix D of the keyframes. The two images on the right show the
alignment paths found by DTW and DDTW.
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Fig. 6. Accuracy comparison DTW described in equation (2),
DTW W: described in equation (3),VSA: proposed Video Sequence
Alignment Algorithm

4.1. Accuracy of Discontinuous Dynamic Time Warping (DDTW)

In the following experiment, we demonstrate on an example the ad-
vantages of the DDTW over the standard DTW. Figure 5 shows the
cost matrix D of the keyframes of two video sequences. Dark colors
resemble high similarity between the frames. Two dark line seg-
ments, separated by a large gap, represent two matching parts in
video sequences. DTW fails to recognize the second segment be-
cause it assumes a continuous path whereas DDTW correctly iden-
tifies both segments.

4.2. Accuracy

For this experiment, we used 60 video segments of 9 minutes each
generated from youtube videos from different genres. Then we re-
encoded them with a different codec and deleted and inserted short
sequences between 3 and 6 minutes at different locations. From the
resulting videos we generated 20 copies with different levels of crop-
ping, Gaussian noise, compression rate and framerate. Our dataset
for the accuracy tests consists of 60 original videos and 1200 query
videos.

We used our proposed VSA algorithm to align the query videos
to the original videos from our dataset. We compared the result
to the DTW and the DTW W algorithms. The accuracy is calcu-
lated as the number of correctly matched frames divided by the total
number of frames in the query video. We allow a tolerance of ±3
frames (120ms). The averaged accuracy results for different levels of
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Fig. 7. Efficiency: Execution time and memory usage of VSA for
different mask sizes C in comparison with DTW

compression, Gaussian noise, cropping and framerate differences are
shown in the four graphs in Figure 6. The figures show that our pro-
posed algorithm is robust against many attacks and significantly out-
performs both, the DTW and the DTW W algorithms except for the
test case where 50% and 60% of the image is cropped. The higher
accuracy values are due to the DDTW and the keyframe matching
step, because the Block A* algorithm alone would produce the same
result as the DTW W algorithm, as they are both optimal.

4.3. Time and Space Efficiency

In the experiments in Figure 7, we used two different versions of
the movie ”The Warring States”. The original has a framerate of 25
fps and a resolution of 704 × 528 pixels, the query has 24 fps and
768 × 432 pixels and a different beginning. We extract clips with
the same length N from both videos. Then we increase the length
of both clips simultaneously until we reach 100,000. We run the
algorithms on our test machine with an Intel Xeon CPU @3.3GHz
Processor and 8GB RAM. We tested three different mask sizes for
VSA. The mask size is dependent on the parameter C in Equation
(7). The values for C correspond to an average mask diameter of
800, 1200 and 1600 nodes. The time and memory complexity of
DTW and DTW W is O(N2). The curves for DTW and DTW W
are identical, hence only DTW is shown in Figure 7. The statistics
for DTW ends at N=25,000, because longer sequences exceeded the
available memory. We can clearly see however the N2 complexity in
time and memory usage in the DTW graph. We show in Figure 7 that
the execution time as well as the memory usage of the proposed VSA
algorithm increases linearly with O(N), which is what we claimed
in Section 3.1. The time used for the keyframe matching can be
neglected. For example, the alignment of two 1 hour videos took
91 seconds from which only 3 seconds were used for the keyframe
matching.

5. CONCLUSION

In this paper we introduced a robust Video Sequence Alignment
algorithm which has linear time and space complexity. We also
showed that the accuracy of the video alignment can be improved
by adding a keyframe matching step prior to the frame-by-frame
alignment. A discontinuous, parameter-free dynamic time warping
(DDTW) method for the keyframe alignment led to significant im-
provements in accuracy. We furthermore reduced the time and mem-
ory requirements while maintaining the accuracy of the alignment
process by introducing the Block A* algorithm.
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