
VIRTUAL TOURING: A CONTENT BASED IMAGE RETRIEVAL APPLICATION

Michael Iliadis, Seunghwan Yoo, Xin Xin, Aggelos K. Katsaggelos

Dept. of Electrical Engineering and Comp. Sc., Northwestern University, Evanston, IL 60208, USA

ABSTRACT

This paper proposes a Content Based Image Retrieval (CBIR) ap-
plication for searching landmarks and buildings in a city using a
smartphone. A user can snap a picture of the building using his
smartphone. The application is able to quickly and accurately find
the name of the building along with many other interesting informa-
tion, such as the history of the building and its Wi-Fi availability.
We present a novel client-server CBIR application that combines
Laplacian-SIFT for feature descriptor, multiple kd-trees for index-
ing and two levels of geometric verification. We present back-end
and front-end Application Programming Interfaces (API) for client-
server CBIR applications and we propose a distributed system archi-
tecture to support multiple client requests. The application consists
of two user interfaces, a web interface and a mobile interface. Image
retrieval results demonstrate the accuracy of the system in recogniz-
ing buildings.

Index Terms— image retrieval system, visual search, image
similarity, image features, indexing

1. INTRODUCTION

Finding similar images efficiently, based on the content within an
image has been recently of interest to multiple research communi-
ties [1, 2]. Many Content Based Image Retrieval (CBIR) applica-
tions are available on the web such as Google Image Search and
Bing Image Search. Quite often, CBIR systems use a client-server
architecture, where the client side sends a photo to the server side
for image retrieval processing. CBIR systems have also been devel-
oped to support user interfaces such as mobile applications. Recent
smartphones have high resolution cameras and an internet connec-
tion, as a result many mobile image retrieval applications have been
developed such as Google Goggle and Amazon Snaptell.

The design of a CBIR system is quite challenging. One has to
choose among different algorithms and system architectures in order
to achieve high performance in terms of time and retrieval accuracy.
A detailed survey about the design challenges of CBIR systems as
well as a comprehensive performance analysis of a mobile CBIR
system can be found in [1].

In this paper, we propose a virtual touring CBIR application. It
can be accessed here: http://hercules.ece.northwestern.edu/ Imagine
walking around a new city and stumbling upon a building which you
know nothing about. Using your smartphone you can snap a picture
of the building and return quickly and accurately the name of the
building along with many other interesting facts and characteristics,
such as the history of the building and its Wi-Fi availability. The
implementation of our system combines CBIR algorithms such as
Laplacian-SIFT for image feature extraction [3], multiple kd-trees
for efficiently indexing all the database features [4], and two geo-
metric verification methods [3,5]. To the best of our knowledge, this

Fig. 1: The web interface of our system. The interface has been
developed in Ruby on Rails.

Fig. 2: The mobile interface of our system. This is an Android ap-
plication developed in Java.

is the first study that combines these techniques in an actual CBIR
application.

We currently provide two user interfaces, a web interface and
a mobile interface. A screenshot of our web interface is presented
in Figure 1. The user can upload his/her image and click on the vi-
sual search button to perform an image search. Our mobile interface
is presented in Figure 2. The user can take a photo of a building
using his/her smartphone camera. After taking a photo, the user
presses the search button, and the server searches the database to
find the corresponding building based on the visual content. Then,
information about this building will be returned and presented on
the user’s phone. We have developed back-end and front-end Appli-
cation Programming Interfaces (API) for CBIR systems. Our APIs
have been designed in a specific way to allow different implemen-
tations of CBIR algorithms so that developers can choose the im-
plementations that best fit their performance requirements. Further-
more, we propose a distributed environment of a CBIR system. Our
system architecture has been designed to support multiple client re-
quests by dividing tasks.

The rest of this paper is organized as follows. In Section 2, we
describe our proposed CBIR system. Our APIs and system design
are presented in detail in Section 3. In Section 4, we present re-
trieval results of our application. Section 5 offers a conclusion and
discusses future directions.

Query Image
Feature

Extraction
Feature

Matching
Geometric
Verification

Database
Images

Training Index of Features

Fig. 3: A typical flow of a CBIR system.

2. PROPOSED CBIR SYSTEM

In this section, we describe each component of a CBIR system, as
presented in Figure 3. One of the main components of the system
is the feature extraction algorithm since typically images in CBIR
systems are represented by local image features. Recently the Scale
Invariant Feature Transform (SIFT) was demonstrated to effectively
model image content for use as descriptors to help locate similari-
ties between images [6]. The similarity between query and database
images is, thus, performed on the set of image features. In mobile
applications, it is required that image features are invariant in differ-
ent viewpoints and lighting conditions since a user may take a photo
from different views and lighting environments compared to the cor-
responding images in the database [1]. Several efficient image de-
scriptor algorithms such as Speed Up Robust Feature (SURF) [7] and
Histogram of Oriented Gradients (HOG) [8] have been developed
and used in the computer vision area. In this work, we used SIFT
features for the implementation of our CBIR system. However, in
a large scale visual search system, the high-dimensionality of these
features may decrease the time performance. To tackle this issue, we
use Laplacian embedding to reduce the feature dimensionality to 16
by conserving the nearest neighbor relations of features [3].

Another component of a CBIR system is the index data struc-
ture. For small databases of images, image features from the query
image can be compared against all the database features. Then, sim-
ilar images are selected from the database based on the number of
features they have in common with the query image. However, for
large databases, it is impractical to compare directly all the database
features. Many data structures have been proposed for efficiently
indexing all the local features [9]. It has been shown that Approxi-
mate Nearest Neighbor (ANN) search works well for this task [10],
and since this requires no offline training it is practical for many ap-
plications with continually expanding databases. However, as the
database size grows, the search time increases significantly. In this
paper, we used kd-tree data structure for indexing. Kd-trees are bi-
nary trees and in [11] it is proven that kd-trees are particularly useful
for efficiently finding nearest neighbors. A kd-tree can be built by
using a hyperplane to split datasets into two equal parts. The height
(ht) of the tree is determined by the user and, thus, the splitting pro-
cess is iterated resulting in 2ht different leaves at the bottom of the
tree. If there are N SIFT features in the database each leaf node
will end up with N/2ht features. Initially, kd-trees were designed
as space partitioning data structures to perform nearest neighbor
searches that partition subspaces linearly [11]. However, they fail
in high dimensional spaces [4]. In our implementation we used mul-
tiple trees in order to incorporate information from different dimen-
sions of our SIFT features, as described in [4]. We chose ht = 10
for the height of the trees.

Another component of image retrieval systems is feature match-

Our Visual Search System

Application ServerClient

Back-end

Web Server

Front-end
web server

Front-end mobile
application

Web
Browser

Laptop

Servers

Fig. 4: High-level design of our virtual touring system with the back-
end components and front-end components.

ing. It is used to compare query feature descriptors and database
feature descriptors during the traversal of the index. In this study
feature descriptors were matched by traversing the kd-trees and the
number of matched features was used to evaluate the success of the
matching.

After feature matching, a short list of similar images is gener-
ated and a geometric verification step might be performed [1]. At
this stage, location information from the query and database fea-
tures is used to confirm that the feature matches are consistent with a
change in the viewpoint between matched images. Eigenvalue based
geometric verification [3] is used in this paper. This algorithm is in-
variant to in-plane and out-of-plane rotation and resistant to falsely
aligned coordinates. In order to further improve the accuracy of the
image retrieval we also used a geometric re-ranking algorithm based
on [5].

3. PROPOSED ARCHITECTURE

Back-end, front-end APIs and system design in a client-server en-
vironment are presented in this section. The back-end API includes
interfaces to be deployed on a server computer while the front-end
API includes interfaces to be deployed on both a server (web inter-
face) and a client computer (mobile application).

3.1. Back-end design

In Figure 4, we present the overall system design. The client side
includes the user interfaces, such as the web application and the mo-
bile application while the application server side (back-end) includes
the image retrieval process. Thus, in our architecture the back-end
image retrieval system is entirely independent from the front-end ap-
plications so that different front-end applications (web applications,
mobile applications, etc.) can be easily deployed.

Our back-end design is presented in Figure 5. The application
consists of two Java servlets, the data exchange servlet and the image
retrieval servlet. After the data exchange servlet gets a request from
the client, it calls the implementation algorithm of the ImageFeature-
sExtraction interface in order to extract image features. Then, image
features are sent to image retrieval servlet which is responsible for
processing the data and retrieving the results of similar images. The
results are sent back to the data exchange servlet and from there back
to the client. Finally the client presents the results.

One of the main requirements, in large-scale image retrieval sys-
tems with multiple client requests is to reduce the retrieval time that
users experience. Therefore, it is highly desirable to distribute the
workload of the retrieval process. In order to meet this requirement

Back-end design

Java Servlet1 – Data exchange Module Java Servlet2 – Image Retrieval Module

SendClientData interface
ImageFeaturesExtraction interface
GetClientData interface1. Data coming in from Client

RerankImageResults interface
MatchImageFeatures interface
IndexImageFeatures interface

2. send image features

4. Data send to Client

3. get retrieval results

Fig. 5: The flow of our back-end design with the two Java servlets
applications and their interaction.

we decided to split the Java servlets into two modules as presented in
Figure 5, the data exchange module and the image retrieval module.
Each module is a different Java servlet application. The deployment
of each servlet should be in different machines. Thus, while a user is
being served by the first machine another user can be served by the
second machine.

3.2. Back-end API

Our back-end API provides interfaces for each one of the compo-
nents of a CBIR system described in Section 2. These interfaces in-
clude GetClientData, SendClientData, IndexImageFeatures, Image-
FeaturesExtraction, MatchImageFeatures and RerankImageResults.
Figure 6 provides details of the interfaces.

The data exchange protocol (e.g., web services) between the
front-end and the back-end can be chosen by the developer. There
might be different protocols that implement the GetClientData and
SendClientData interfaces. Data can be image features or the image
itself depending on the design of the image retrieval system. Thus,
the extraction of image features can be performed either on the back-
end or the front-end application. There are many algorithms that im-
plement the ImageFeaturesExtraction interface since there are dif-
ferent feature descriptor algorithms proposed in the literature [12].

The IndexImageFeatures, MatchImageFeatures and RerankIm-
ageResults interfaces are used for the image retrieval process. The
IndexImageFeatures interface includes methods for the index data
structure. There might be different indexing schemes (e.g., kd-tree)
that implement the IndexImageFeatures interface. We need to point
out that the createIndex method constructs a List data structure, as
presented in Figure 6. Our image search index is a data structure that
remains in memory waiting for search requests.

There are also a variety of algorithms to measure the similarity
between image features [1]. Thus, there may be different algorithms
that implement the MatchImageFeatures interface. Algorithms that
implement the RerankImageResults interface can be used to refine
the results. Implementations in this category might be RANSAC
[13] or other geometric verification algorithms [1, 3, 5].

Different implementations of CBIR systems have been proposed
in [1, 14]. These implementations differ in the selection of image
features type, indexing scheme, or geometric verification algorithms.
One of our objectives is to provide a comprehensive back-end API
with the implementations of all different algorithms for each one
of the CBIR components. Therefore, based on different constraints
(e.g., network bandwidth, number of machines available, etc.) the
developer will be able to choose the implementation that fits his/her
requirements to ensure best performance.

Back-end API

GetClientData interface SendClientData interface

ImageFeaturesExtraction interface IndexImageFeatures interface

MatchImageFeatures interface

RerankImageResults interface

{
 public FeaturesExtraction getDataProtocol(data);
}

{
 public void sendDataProtocol(List results);
}

{
 private List image_features;
 public void featureDescriptorAlg(File image);
 public List getImageFeatures();
 public void setImageFeatures(List image_features);
}

{
 private List index;
 private List results;
 public void createIndex(DatabaseConn features_all);
 public List searchIndex(FeaturesExtraction feature_query);
 public List getIndex();
 public void setIndex(List index);
 public List getResults();
 public void setResults(List results);
}

{
 public float distanceFeatures(List feature_vector, List feature_query_vector);
}

{
 public List rerankingAlg(List results);
}

Fig. 6: Back-end interfaces and their methods.

0 5 10 15 20
70

75

80

85

90

95

100
Retrieval Results

Top M similar images

R
e
c
o

g
n

it
io

n
 R

a
te

 (
%

)

Fig. 8: Performance of our system. Percentage of correctly recog-
nized building images in the top M positions of the result list.

3.3. Front-end API

Another requirement of our system is to keep our front-end API as
simple as possible so that new user interfaces (e.g., iOS application)
can easily be deployed on the system. Therefore, the complexity of
the system stays on the back-end side. The front-end API consists of
the GetServerData and SendServerData interfaces and our front-end
API just includes interfaces for data transfer between the client and
the server. Data can be a compressed image (e.g., JPEG) or image
features as described in Section 3.2.

4. RETRIEVAL RESULTS

Our virtual touring application supports visual search for buildings in
Northwestern University, Evanston campus. The database consists
of 1,062 images from 64 different buildings. The building images
include different views and scales, and some buildings are partly
occluded by other objects such as trees and people.

Figure 7 shows the visual search results of our image retrieval
application. The results consist of a list of the top similar images.
The number of images in the list can be determined by the developer.
In Figure 7, (a) shows retrieval results of our web interface, (b) shows
the presentation of building’s information, such as the history of the
building and its Wi-Fi availability. Figures 7(c) and 7(d) show the
results of our mobile interface.

(a) (b) (c) (d)

Fig. 7: Retrieval results of the web and mobile interface and presentation of the building’s information.

4.1. Retrieval Performance

Our database includes about 16 different images (different view-
points and scales) of the same building. We used each image in our
database as a query in order to measure the retrieval performance of
our system. We have the ground truth names of the buildings in our
database and, thus, we can find whether the retrieval system returns
the correct building. We excluded the query image from the results.
Figure 8 shows that more than 72% of the building images in our
database were correctly recognized in the first position of our result
list. Also, about 95% of the buildings were correctly recognized
within the top 12 positions of the result list.

5. CONCLUSIONS

In this paper, we have presented a novel visual search application for
virtual touring. The implementation of our CBIR system combines
Laplacian-SIFT for feature descriptor, multiple kd-trees for indexing
and two levels of geometric verification. The system provides two
user interfaces, a web interface and a mobile interface. We presented
our front-end and back-end APIs which allow different implementa-
tions of CBIR algorithms to be developed based on developer’s re-
quirements. Our system design can support multiple client requests
efficiently by distributing the image retrieval processing into differ-
ent machines. Retrieval results show that our system returns the cor-
rect building with high accuracy.

Our intention is to support a large-scale CBIR system with mul-
tiple client requests while keeping the retrieval time as low as pos-
sible. Thus, we are looking at collecting more building images in
order to construct a larger database. Furthermore, our future direc-
tion is to perform comparisons of various different implementations
of CBIR algorithms (different indexing schemes, features descrip-
tors, etc.) and to analyze the system performance in terms of time
and retrieval accuracy.

6. REFERENCES

[1] B. Girod, V. Chandrasekhar, D. M. Chen, C. Ngai-Man,
R. Grzeszczuk, Y. Reznik, G. Takacs, S. S. Tsai, and R. Vedan-
tham, “Mobile visual search,” Signal Processing Magazine,
IEEE, vol. 28, pp. 61–76, 2011.

[2] G. Schroth, R. Huitl, D. Chen, M. Abu-Alqumsan, A. Al-
Nuaimi, and E. Steinbach, “Mobile visual location recogni-
tion,” Signal Processing Magazine, IEEE, vol. 28, pp. 77–89,
2011.

[3] X. Xin, L. Zhu, and A. K. Katsaggelos, “Laplacian embed-
ding and key points topology verification for large scale mobile
visual identification,” Signal Processing: Image Communica-
tion, 2013.

[4] J. Springer, X. Xin, Z. Li, J. Watt, and A. K. Katsaggelos, “For-
est hashing: Expediting large scale image retrieval,” in Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(to appear), 2013.

[5] S. S. Tsai, D. Chen, G. Takacs, V. Chandrasekhar, R. Vedan-
tham, R. Grzeszczuk, and B. Girod, “Fast geometric re-ranking
for image-based retrieval,” in Image Processing (ICIP), 2010
17th IEEE International Conference on, 2010, pp. 1029–1032.

[6] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” Int. J. Comput. Vision, vol. 60, pp. 91–110, 2004.

[7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up
robust features (surf),” Comput. Vis. Image Underst., vol. 110,
pp. 346–359, 2008.

[8] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, 2005, pp. 886–893.

[9] X. Xin and A. K. Katsaggelos, “A novel image retrieval frame-
work exploring inter cluster distance,” in Image Processing
(ICIP), 2010 17th IEEE International Conference on, 2010,
pp. 3213–3216.

[10] J. You, W. Jingdong, Z. Gang, Z. Hongbin, and H. Xian-Sheng,
“Optimizing kd-trees for scalable visual descriptor indexing,”
in Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, 2010, pp. 3392–3399.

[11] J. L. Bentley, “Multidimensional binary search trees used for
associative searching,” Commun. ACM, vol. 18, pp. 509–517,
1975.

[12] T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature De-
tectors: A Survey, Now Publishers Inc., Hanover, MA, USA,
2008.

[13] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. ACM, vol. 24, pp. 381–
395, 1981.

[14] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval:
Ideas, influences, and trends of the new age,” ACM Comput.
Surv., vol. 40, pp. 5:1–5:60, 2008.

